Department of Electronics and Communication Engineering

Sub. Code: EC 6003 Sub. Name: Antennas & Wave Propagation

Unit 1

Syllabus: Radiation

Potential function and the Electromagnetic field, potential functions for Sinusoidal Oscillations, retarded
potential, the Alternating current element (or oscillating Electric Dipole), Power radiated by a current
element, Application to short antennas, Assumed current distribution, Radiation from a Quarter wave
monopole or Half wave dipole, sine and cosine integral, Electromagnetic field close to an antenna, Solution
of the potential equations, Far-field Approximation.

1.1 Introduction:

Antenna may be considered as a metallic device for radiating or receiving radio waves. It is a transitional
structure between free space and a guiding device i.e. transmission line.

The various commonly used antennas are whip antennas on cars, single turn loop antennas for UHF TV
receiver, roof mounted log-periodic antenna and satellite parabolic reflector receiving antennas. These
commonly used antennas represent only a small segment of antenna systems that were being developed
for specialized and high performance communication links like RADAR system, navigation system and
scientific study.

Wave Propagation: The performance of a communication links depends not only on the antenna used but
also it is strongly influenced by atmosphere and conductivity of ground.

Electromagnetic spectrum and frequency band designation: The electromagnetic wave energy radiated by
antenna oscillates at radio frequency. The wavelength of a wave is related to frequency f and velocity c of a
wave by
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The classification of the radio waves, their nomenclature modes and typical services are shown in table
1.01. The range of frequencies is broken down into several bands designated as shown in table 1.02.
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Table 1.01

S. No. Frequency Designation Typical Service
01 3-30Hz Extremely Low Detection of buried metal objects
Frequency (ELF)
02 30 - 300 Hz Super Low Frequency | lonospheric Sensing, Electric Power
(SLF) Distribution, Submarine Communication
03 300 Hz — 3KHz Ultra Low Frequency | Audio Signals on Telephone
(ULF)
04 3-30KHz Very Low Frequency Navigation Sonar, position location
(VLF)
05 30 - 300 KHz Low Frequency Radio Beacons, Weather broadcast stations for
(LF) air _navigation
06 300 — 3000 KHz Medium Frequency AM Broadcasting, Coast Guard
(MF) Communication, direction finding
07 3-30 MHz High Frequency Telephone, Telegraph, short wave
(HF) broadcasting
08 30 - 300 MHz Very High Frequency | Television, FM Broadcast, Air Traffic Control,
(VHF) Police, Mobile Radio Communication
09 300 - 3000 MHz | Ultra High Frequency | Television, Satellite Communication, RADAR,
(UHF) Microwave Ovens, Cellular Telephone
10 3-30GHz Super High Frequency | Airborne RADAR, Microwave links, Satellite
(SHF) Comm., Remote Sensing, radio astronomy
11 30 -300 GHz Extremely High RADAR, Advanced Communication Systems,
Frequency (EHF) Remote Sensing, radio astronomy
Table 1.02
Microwave Band Designation
S. No. Frequency
Old New
01 500 - 1000 MHz VHF C
02 1-2GHz L D
03 2-3GHz S E
04 3-4GHz S F
05 4—-6GHz C G
06 6 -8 GHz C H
07 8—-10GHz X I
08 10-12.4 GHz X J
09 12.4-18 GHz Ku J
10 18 -20 GHz J
11 20-26.5 GHz K
12 26.5-40 GHz Ka K

1.2 Review of Electromagnetic Theory

Electromagnetic fields are produced by time-varying charge distributions which can be supported by time-
varying current distributions. Consider sinusoidally varying electromagnetic sources. Sources having
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arbitrary variation with respect to time can be represented in terms of sinusoidally varying functions using
Fourier analysis. A sinusoidally varying current i(t) can be expressed as a function of time, t, as
i(t) = ICos(wt + @)

where Iy is the amplitude ,w is the angular frequency, and ¢ is the phase. The angular frequency, w, is
related to the frequency, f by the relation w = 2nf. The current i(t) is given by
i(t) = I,Sin(wt + @)

Where ¢’ = ¢ + /2. Therefore, we need to identify whether the phase has been defined taking the cosine
function or the sine function as a reference. We have chosen the cosine function as the reference to define
the phase of the sinusoidal quantity.
Since cos(wt + ¢)=Re{e“*®)} where, Re{} represents the real part of the quantity within the curly brackets,
the current can now be written as

i(t) = I Re{e/(@t+¥)}

= Re{lye/?e/®t}

The quantity I,e/? is known as a phasor and contains the amplitude and phase information of i(t) but is
independent of time, t.

1.3 Fundamental of Electromagnetic Radiation

An antenna is a structure usually made of good conducting material, designed to have a shape and size
such that it radiates electromagnetic power in an efficient manner. When antenna is excited by time
varying currents, it radiates electromagnetic waves. In order to radiate efficiently, the minimum antenna
size must be comparable to the wavelength.

To calculate the field radiated by an antenna Maxwell’s equations and an auxiliary function, Retarded
Potential is used. Maxwell’s equations describe all electromagnetic phenomena.

VxE=-0B/ct .1.3.1
aD

VX H= — ..1.3.2
I+ 5

(Maxwell’s Equations)

V.D=p ..1.3.3

V.B=10 ..1.3.4

Where E : Electric field intensity (unit: volt per metre, V/m)

H : Magnetic field intensity (unit: ampere per metre, A/m)

D : Electric flux density (unit: coulomb per metre, C/m)

B : Magnetic flux density (unit: weber per metre, Wh/m or tesla, T)
J : Current density (unit: ampere per square metre, A/m2)

p : Charge density (unit: coulomb per cubic metre, C/m3)

The first is Faraday’s law of induction; the second is Ampere’s law as amended by Maxwell to include the
displacement current dD/0dt, the third and fourth are Gauss’s laws for the electric and magnetic fields. The
displacement current term dD/dt in Ampere’s law is essential in predicting the existence of propagating
electromagnetic waves. Egs. (1.1.1) are in Sl units. The quantities E and H are the electric and magnetic
field intensities and are measured in units of [volt/m] and [ampere/m], respectively. The quantities D and B
are the electric and magnetic flux densities and are in units of [coulomb/m2] and [Weber/m2], or [tesla]. B
is also called the magnetic induction.
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The quantities p and J are the volume charge density and electric current density of any external charges.
They are measured in units of [coulomb/m3] and [ampere/m2]. The right-hand side of the fourth equation
is zero because there are no magnetic monopole charges.

The charge and current densities p, J] may be thought of as the sources of the electromagnetic fields. For
wave propagation problems, these densities are localized in space; for example, they are restricted to flow
on an antenna. The generated electric and magnetic fields are radiated away from these sources and can
propagate to large distances to the receiving antennas. Away from the sources, that is, in source-free
regions of space, Maxwell’s equations take the simpler form:

VxE =-0B/ ot

..1.3.5
aD
VxH=]+— ..1.3.6
J at
(Source Free Maxwell’s Equations)
V.D =10 .13.7
V.B=0 ..13.8

1.4 Basic Maxwell’s Equations

Maxwell’s equations can be written in differential and integral forms. For the present study, the
differential form of equations is more suited. The relevant equations involving electric field intensity E,
electric flux density D, magnetic field intensity H, magnetic flux density B, current density J and the charge
density p are as given below.

VX H =]+ dD/dt (in general),

VX H =0D/at(if)=0)and VX H = ] (For DC Field)

..1.4.1
VX E = —0dB/dt (in general) and V X E = 0 (For static Field) 142
V.D = p(ingeneral)and V.D = O (for charge free regioni.e., p = 0) 143
V.B=0 ..1.4.4

The field quantities involved in equations 1.4.1 and 1.4.3 are connected by the following relations:

D=k 145
B=uH ..1.4.6
J=oE=E/p 147

here € is the permittivity, u is the permeability, o is the conductivity and p is the resistivity (p = 1/0) of the
media. It is to be noted that the symbol p represents entirely different quantities.
Besides the above, the other relevant relations are

fpwl ffpﬁs:ffprv ..1.4.8
4meR 4meR 4meR

E=-VV

..1.4.9
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2xy _ =P 2y — () if p=
V2V = - (in general) and V*V = 0 if p=0 ..1.4.10

In equation 1.4.8, V is the scalar electric potential; pl , ps and pv are line, surface and volume charge
densities; and R is the distance between the source and the point at which V is to be evaluated.

plol jjuKas= fffﬂfav ..1.4.11
4nR 4nR 4nR

B = VxA

..1.4.12

2 — H 2N — H .
VA = —uJ (in general) and V°A = 0 if J=0 1413

In 1.4.11, A is the vector magnetic potential, | is the current, K is the surface current density and J and R are
the same as defined earlier.

1.5 Retarded (Time Varying) Potential

Some of the relations listed above are derived for the static or dc field conditions. Since radiation is a time
varying phenomena, the validity of these relations needs to be tested. To start with consider Eq. 1.4.9
When its curl is taken, it is noted that

VXE=Vx(-VV)=0

..1.5.1
This result is obtained in view of the vector identity that the curl of a gradient is identically zero.
But from 1.4.2, VX E = —dB/0dt for a time-varying field.
The discrepancy is obvious and can be addressed by using 1.4.12.
Let
E=-VV+N ..1.5.2
VXE=VX(-VV)4+4VXxN=04+ VXN=-9B/dt = —9(VxA)/dt
Thus, VXN=—-0(lVxA)/dt =—-Vx0JdA/ot= V x(—0A/dt)
Or, VXN=—0A/0t 153

Substitution of equation 1.5.3 in section 1.3 gives a new relation 1.5.4 which satisfies both the static and
the time-varying conditions:

E=-VV—0A/ot ..1.5.4

In the second step, the validity of third equation of (1.4.3) is to be tested by using the relation of (1.4.5)
and 1.5.4

V.D

V.(¢E) = €V.E
= eV.(=VV — dA/dt)
= &(=V.VV — 3/0t(V.A))

From the above relation,
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V2V + 0/0t(V.A)) = —p/e

..1.5.5
The RHS of 1.5.4 leads to the following relations:
2 . .
VeV = —p/e for static conditions 156
V2V = —p/e —0/0t(V.A) for time-varying conditions 157

In the third step, the validity of 1.4.1 is to be tested by using the relations of equations 1.4.6, 1.4.12 and

1.5.4
VX H =]+ 0D/ot 158
B = uHorH = B/u
The LHS of 1.5.8 can be written as
LHS = (VX B)/u= (VxXVxA)/u=[V(V.A) —V?A]/u 159
This relation uses the vector identity V X Vx 4 = V(V.A) — V724 1510
The RHS of 1.5.8 can also be written as
RHS =] +¢edD/ot =] +¢ed(—VV —0dA/0t)/0t
=] +¢&[-V(aV/at) — d%A/at?]
—7_ 2 2
=] —¢[V(aV/ot) + 0°A/0t7] 1517
On equating LHS and RHS terms, we get
V(V.A) — V2A = uJ — ue[V(OV/ot) + 0%A/at? 1512

In 1.5.7 and 1.5.12, the term V2A is defined in (1.21), whereas the term V A is yet to be defined. As per the
statement of Helmholtz Theorem, “A vector field is completely defined only when both its curl and
divergence are known”. There are some conditions which specify divergence of A. Two of these conditions,
known as Lorentz gauge condition and Coulomb’s gauge condition, are given by 1.5.11 and 1.5.11
respectively.

V.A = —pedV /ot

..1.5.13
VA= 0 ..1.5.14
Using the Lorentz gauge condition, 1.5.7 and 1.5.12 can be rewritten as
V2V = —p/e — d(uedV /dt) /ot = —p/e — ue(d2V /dt?) 1.5.15
2y — __ 2 2
VeV = —w + pe(0°A/0t?) ..1.5.16
For sinusoidal time variation characterized by e/*!
V= Voef‘”t and A = Aoef“’t
27 — __ 2
VeV = —p/e + w*ueV ..1.5.17
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2 — 2
ViA =~ + wue] ..1.5.18
If p and J in the expressions of V and A given by 1.4.8 and 1.4.11 of Sec 1.3, they become functions of time
and this time t is replaced by t’ such that t’ = t-r/v. p and J can be replaced by [p] and [J] respectively.
Equation 1.4.8 and 1.4.11 of Sec 1.3 can now be rewritten as

_ f lpldv ..1.5.19
v 4neR

A= f“mdv ..1.5.20
v 4nR

As an example if p = e cos wt, and t is replaced by t’,
one gets [p] = e cos[w(t —R/u)]. In this expression, R
is the distance between the elemental volume dv
located in a current-carrying conductor and the point
P as shown in Fig. 4-1, and v is the velocity with
which the field progresses or the wave travels. V and
A given by 1.5.19 and 1.5.20 are called the retarded
potentials. If t'_ =t + r/u, V and A are termed as
advanced potentials.

Origin

Figure 1-1 Geometry of the configuration

With Reference to the figure 1.1, equations 1.5.19 containing the element volume dv and an
and 1.5.20 can be written as arbitrary point P.
1 [ p(,t)
Vrt) = dv’ ..1.5.21
"8 4me _]; R v
TR IS
"0 =1z fv R

In 1.5.19 and 1.5.20,V and A are the functions of the distance r and the time t. To get the retarded
potentials from (19) and (20), t is to be replaced by t’ and the resulting field equations are

1 p(r,t—R/v)
Vi) = f n dv ..1.5.23
v

r,t—R/v
A(r6) :ﬁ IKT/)CW ..1.5.24
v

Similarly, advanced potential expression can be obtained by replacing t -R/u by t +R/u in 1.5.21 and 1.5.22.
Equation 1.5.22, the starting point for the study of radiation process, is rewritten in the following
alternating form on replacing R by r.

A ::_n fwdv ..1.5.25
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1.6 Far Field due to an Alternating Current Element (Oscillating Dipole)
With reference to Fig. 1.6.1 consider that a time Az
varying current / is flowing in a very short and very

thin wire of length d/ in the z-direction. This current Rcos 0
is given by Idl cos wt. Since the current is in the z r
direction, the current density J will have only a z- Ho
component (i.e., J = J;a;). The vector magnetic 0 Eo
potential A will also have only a z-component (i.e., A

= Aa;). 0
Thus A’A=A’A, =—ulJ, ..1.6.1 1 dl cos wt

Though the cylindrical coordinate system can Rsin0
suitably accommodate the configuration of a
filamentary current carrying conductor, wherein

only the Az component exists and the Ap and Ad Figure 1.6.1 Configuration of filamentary
components are zero. current carrying conductor

<<y

X

But since the 3-dimensional radiation problem needs to be tackled in spherical coordinate system, Az is to
be transformed to the spherical coordinate system. This transformation results in

A, =A,Cos0,A, =—A,SinfandA, = 0 ..1.6.2

In view of the relation Idl = Kds = Jdv for filamentary current, eq 1.5.250f sec. 1.4 can be written as
_ u ldlcosw(t —r/v)

2= - ..1.6.3
In view of 1.6.2 and 1.6.3,
Idlcosw(t —r/v Idlcosw(t —r/v
;= el ( / )cosé? and Ay = _E ( / )sinH ..1.6.4
4n r 4n T
Further from the relation B = VxA, the components ofV xA are obtained as below,
1 0 04,
= —(si -] = = ...1.6.5(a
(Vx A), Sine[ae(smHAq, a(p)] B, =0 (a)
1 04, 19(rds)
= i _— = = ...1.6.5(b
(¥ x Ao [r sinf 0@ (sin04q r or )] Be =0 (b)
110 0A
(Vx Ao = — [5 (rAg — a_er)] = By = iHy ..1.6.5(c)

From eq 1.6.5 it may be noted that only Hyg survives. It can also be stated that ¢ derivative is zero (i.e.,
0/9¢ = 0) for all field components due to the symmetry along ¢. From equations 1.6.2 &1.6.5c,

_ Idlsinf

- r\ cosw(t—r1/v)
— —i - ..1.6.5
Hy I [rv sinw (t v) + 2
Now we know that,
1
E = EI(V X H)dt
1 1
Thus  Ey = ;f(v x H),dt and Eg = ;f(v X H)gdt ..1.6.6
Since 1 8(H¢ sin 8) 1 6(rH¢) ) ] o )
VxH=— a —— a, its components in radial directions are
rsin @ o6 r or
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(VXH)r _ 1 0 |:Idl sin? 0{2 Sinw(,_f}rwﬂ — Er ..1.6.7

rsin® 00| 4r rv v r

From equations 1.6.6 and 1.6.7

dr 7V v r
Putting t’=t-r/v
E - 21dlcosO cosza)t N sin a;t ..1.6.9(a)
drzs rv wr
Similarly,
- Idlsin 0 B cosmza)t N cosza)t N sin a:t ..1.6.9(b)
dre rv rev or

B Idlsin @] a)sina)t’+ cosa)t'+ sin et ' |

2 2 3
dre rv rv or

4

B Idlsin @] a)sinwt’+ cosa)t'+ sin et |

2 2 3
4re rv rv or

0
B Idlsin @] a)sinwt’+ cosa)t'+ sin et |

2 2 3
dre | rv rey wr

[
H, can also be written as,
_ IdlsmH[cos ot'  osin ot } 1610

¢ 4 r? rv

It can be noted that the magnitudes of the two bracketed terms will become equal if the following relation
is satisfied:

—= —Qorr = — =— 0rr= ..1.6.11

1 w LA A A
r v w 2nf 2m 6

From 1.6.11 it can be concluded that for r < A/6, the induction field will dominate whereas for r > A/6, the
radiation field assumes more importance. Thus for r >> A/6, only the radiation field needs to be accounted.

The expressions of Ee, Er and H, given by 1.6.9 and 1.6.10 involve three types of terms, which
represent three different types of fields. These are noted below:

1. The terms inversely proportional to r® represent electrostatic field. Such terms are involved in the
expressions of Eg and E; .

2. The terms inversely proportional to r? represent induction or near field. Such terms are involved in
all the field components, i.e., in Eg, E-and Hy.

3. Lastly, the terms which are inversely proportional only to r represent radiation (distant or far) field

and are involved in the expressions of Eg and H,.
1.7 The Hertzian Dipole - Relation between a Current Element and Electric Dipole
Ques: Write a note on Hertzian Dipole.

What is Hertzian Dipole? Write the relation between a current element and an electric dipole
writing suitable expressions.
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A Hertzian Dipole is nothing but an infinitesimal current element | dL. Actually

such a current element does not exist in real life, but is serves as a building block 4

in calculating the field of a practical antenna using integration. It is observed that T

electric field of the alternating current element contains the terms which dL T I
corresponds to the field of an electric dipole.

A Hertzian dipole consisting two equal and opposite charges at the end of the l

current element separated by a short distance dL as shown in figure 1.7.1. The

wires between the two spheres where charges can accumulate is very thin as Figure 1.7.1 Hertzian
compared to the radius of spheres. Thus the current | is uniform through the Dipole

wires. Also the distance dL is greater as compared to the redii of the spheres.

Let the current through the wires is sinusoidal,

i = Icoswt 171

Then the charge accumulated at the ends of the element and current flowing through the wires are related
to each other by the expression,

dq
i=——-= lcoswt ..1.7.2
dt
therefore dq = Icoswtdt ... Separating variables

Integrating both sides with respect to corresponding variables, we get

I sinwt
St .1.7.3

q= o

The expressions for the electric field components due to the separate charges at the ends of the current
element are given by

2 qdL cos6
Er = W ..1.7.4
q dL sin6
and Eg = ——5— 175

Substituting the values of q, in terms of current | from equations 1.7.3 to 1.7.4 and 1.7.5, the expression for
the electric field components are given by
2 1 dL cos6 sinwt’

E = .1.7.6
r 41er3
[ dL sin0 sinwt’
and By = —f—— .1.7.7
TEWT

From the above two equations it is clear that these are the terms which appear in the expressions for
the electric field due to the current element.

When such Hertzian Dipoles are connected end to end forming a practical antenna, it is observed that
the positive charge at one end of the dipole gets cancelled by the equal and opposite charge at lower end
of the next dipole. Hence when the current is uniform along the antenna, then there is no charge
accumulation at the ends of dipole which indicates that 1/r® term is absent and only induction and
radiation fields are present. The chain of Hertzian dipole forming part of the antenna is shown in figure
1.7.2 (a).
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() Current
o Distribution

D= ==

(b) Charge and current distribution
(a) Chain of Hertzian Dipole of linear antenna

Figure 1.7.2

But if the current through the antenna is not uniform throughout then there is an accumulation of
charge as shown in figure 1.7.2 (b), these charges cause stronger electric field component normal to the
surface of the wire.

1.8 Power radiated by a Current Element

Consider a current element placed at a centre of a spherical co-ordinate system. Then the power radiated
per unit area at a point P can be calculated by using Poynting Theorem. The power flow per unit area is
given by Poynting Vector.

According to Poynting Theorem, the instantaneous power is given by,

P=ExH ..1.8.1
The Components of the Poynting Vector are given by,
P =E,H,
Fy=-EH, ..1.8.2
And P,=E,H,

But we know that when current element is placed at the origin, then the E4 component of the electric field
is zero. In other words, the Poynting vector will have only 8 and r components.

Let us rewrite the field components of the electric and magnetic fields due to the current element,
replacing v by c for the propagation in free space,

£ 21dlcos@ {cos wt' sin a)t'}

+
Cl"2 a)r3

r

dre

_Idlsin@{ osinwt' coswt' sina)t}

2 3

4 2
cr cr wr

47e

H - Idlsin@[cosa)t'_ a)sina)t'}

’ A7 r? re
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The 8 component of the instantaneous Poynting vector is given by
P,=-EH,

dre 2 4 2

—21Idl cos @ [cos wt' N sin a)t'} Idlsin 0 {—a)sin wt' N cos a)t'}
cr wr’ cr r

167°¢ ! :

_ 2I’dI’sin@cosO| —wsinot'coswt'  cos’ wt' —wsin® or' . sin et 'cos wt'
c*r cr wcrt wr

Using property 2sinBcosB=sin20

_ I’dl’sin20| wsin2ot' cos’wt'  wsin® ot sin2cot}

167°¢ i 20 cr' wcr* 201’
I’dlI* sin260 ] wsin2ot' o , .\ sin2at'
= > — +—4(sm wt'—cos a)t)——5
16r°¢ | 2c°r cr 20r
Now Lr., > 1 |1-cos2mt' (1+cos2awt'
—4[sm t'— cos a)t]:—4 -
cr cr 2 2

_L{—ZCOSZ@I':' —cos2awt'

crt 2 crt

Substituting value of the term in the original expression,

_IzdlzsinZO{a)siHZa)t' —cos2awt' sinZwI'} 183

Ty = 207 crt 201
The average values of sin2wt’ and cos2wt’ terms over a complete cycle is zero. This clearly indicates that
for any value of r, the average value of Pg is always zero over a complete cycle. Thus there will be the

power flow back and forth in 6-direction only. Hence in 6-direction, there will be no net or average flow of

power.
Let us calculate now radial component of the Poynting vector,
P =-E,H,
ldlsin@| —wsinwt' coswt' sinot' |ldlsin@| —wsinwt' cosot'
= 2 + >t 3 + 2
dre cr cr or 4r cr r
_I’dI’sin’ 0| @’sin’ ot'  osinowt'coswt' wsinwt'coswt' cos’ot' —wsin® o' | sinot'cos o'
167°¢ i c’r’ c’r’ c’r’ cr' wcr’ or’

167°%¢ cr? 27 20 cr’ wcr* 20r°

_I’dP’sin’ 0| @’sin’ ot' wsin2ot' wsin2ot' cos’wt' —osin® wt' sin2a)t}

B 1’dl*sin® 0] @* (1-cos2mt') wsin2wt' wsin2wt' (1+cos2wt' l—cos2wt') sin2awt'
- 2 32 - 2.3 23 T 4 - 4 + 5
lor"e | cr 2 2¢°r 2¢cr

2cr 2cr 20r

_I’dl’sin’ 0| @ (1-cos2at') wsin2at' cos2ot’ _ sin 201"
167°¢ 2¢°r° c’r’ cr 201
Rearranging the terms,
P I’dl’sin® 0 || sin20t'  cos2at' wsin2at' o’ (1-cos2awt’)
' 167°¢ 201 cr' c’r’ 2¢°r°

..1.8.4
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Again the average values of sin2wt’ and cos2wt’ terms over a complete cycle is zero. Hence the average
radial power is given by

I’dl’sin* 6 || o°
b = 2 32
167°¢ 2c’r

B o’I*dl’ sin” 0
IRV o

1 (wldlsingY’

25c( ]

SP o=

r

drre

But for free space, intrinsic impedance no=1/¢c

. 2
P :@(a)ldlsmﬁj

T2 e ..1.85

The power component represented by equation 1.83 is in radial direction. Hence it is called radial power.
Equation 1.85 represents the average power flow.

The radiation terms in the expressions of the field contribute to this average power flow. When the point is
away from the current element at far distance, the radiation terms contributes to the average power. But
when the point is very close to the current element, the terms related to the induction and electrostatic
fields are dominant and only 1/r terms contribute to the average power flow.

From the expressions of Ee and Hg, the amplitudes of the radiation fields only can be obtained. The
amplitude from Eg component is given by,

wldl sin @
Ey=————
Adzevr
B (a)/v)ldlsin@
o (271’)(8\/)21’
27v 1
But /1=7and,77=;
E - nldl sin 8
¢ 2r ..1.8.6

Similarly the amplitude from Hg is given by,

H - wldl sin 0

$ dvr

_ Idlsin®

" H,
20r ..18.7

The radiation terms of Eg and Hy are in time phase and are related by

¢ ..1.8.8
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The total power radiated by the current element
can be obtained by integrating the radial Poynting
Vector over a spherical surface. Consider a
spherical shell with the current element IdL placed
at a centre of the spherical co-ordinate system as
shown in figure 1.81. The point P at which power
radiated is to be calculated is independent of an
azimuthal angle ¢, so the element of area ds on
the spherical shell is considered as strip.
The element of area ds is given by

ds = 2 7 r’sinBdO

..1.8.9 o :
Figure 1.81 Element of area on spherical shell in the
form of strip
The total power radiated is calculated by integrating average radial power over the spherical surface,

Power = Uj Pds
surface 1810

i ”—;[—‘”IZL Singjz (277" sin 0d0)
Trc

surface

272 2 .2
i [’7—2())[—“) fg”; - 0](2;”2 5in 6)do
TrcC

surface

272 2
- m Msirﬁgdg

167¢*

surface

_n@’’dl
167¢*

gj sin® 0dO
surface ..1.8.11

In spherical co-ordinate system, 6 varies from 0 to . Hence putting limits of integration as,

272 2
Mjsif 0do

0

212 L2 /2 e l2
LA T Gin? ag| - [sin’ 0d0 =2 [ sin’ 0a0
0 0

0

Power =
167¢

.. Power =
8rzc

Using the reduction formula for calculating the integral. By the reduction formula,
7l2

I sin” xdx = n_—l {%} if nis even

0

/2 n—l
j sin” xdx =| 2— if n is odd
0

Here nis 3 i.e. hence we can write,
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l2
j sin’ 0d0 = [E} = 2
0 3 3

Substituting this value in the equation of power, we get
n,’ I’dl’ (2)

Power = > —
87c

3

n’1*dl’
2

127c ..1.8.12

.| Power =

The power represented by the above equation is in terms of the maximum or peak current. We know that,

1
], =1

eff \/5
or Im :\/Eleﬂ

Thus the power can be expressed in terms of the effective current as
2 2 2
mo’ (V21 ) dL

127¢*

Power =

17,0° 1 3 d?
2

b67c ..1.8.13

.| Power =

For free space, 17,=120

o 2r. o 4r

= l.e.
and - 1 2 12

Substituting values in equation 1.8.13
Ar?

(12(»:)( e jlfﬂ.sz

6

Power =

272 2
80712, dL

.. Power = e

2
.| Power = 807" (%j I:ﬁ
2/ g

..1.8.14

Equation (1.8.14) is of the radiated power in terms of effective current. We know that power is in the form
of I2R. Thus the coefficient in the above equation is nothing but the resistance. This resistance is called the
radiation resistance of the current element, and represented by Rraq.

2
IR, =807 [d—Lj
A

and

1.9 Power radiated by a Current Element

The practical example of the centre-fed antenna is an elementary dipole. The length of such centre-
fed antenna is very short in wavelength. The current amplitude of such antenna is maximum at the centre
and it decreases uniformly to zero at ends. The current distribution of short dipole is as shown in figure
1.9.1.
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If we consider same current | flowing
through the hypothetical current element and the
practical short dipole, both of same length, then the
practical short dipole radiates only one-quarter of
the power that is radiated by the current element.
This is because the field strength at every point on
the short dipole reduces to half of the values for the
current element and the power density reduces to
one quarter. So obviously for the same current, the
radiation resistance for the short dipole is % times
of the current element.

Current
distribution

\ 4

Figure 1.9.1 Current Distribution of Short Dipole

Hence the radiation resistance of the short dipole is given by

R, (short _ dipole) = 5{807# (

"R, (short _ dipole) ~ 200 (é

)

i)

L

;

..1.9.1

Another practical example of an antenna is a monopole or short vertical antenna mounted on a reflecting

plane as shown in figure 1.9.2.

Let the monopole is of length h. Again if we
consider the same current |, flows through a
monopole of length h and a short dipole of length
I=2h then the field strength produced by both the
antennas is same above the reflecting plane. But the
monopole radiates only through the hemispherical
surface above the plane. So the radiated power of a
monopole is half of that radiated by a short dipole.
Hence the radiation resistance of a monopole is half
of the radiation resistance of the short dipole.

R, (monopole) = %[Rmd (short _ dipole)] = %{207[2 (

=107> (ljz
A

But h= £/2 for monopole
2h

2
j = 407[2(
A

2h h

R, (monopole) =107" ( /1

2
R ., (monoppole) ~ 400(%)

;

Reflecting

/ plane

Figure 1.9.

L

i)

2 Current Distribution monopole

..1.9.2

..1.9.3

The expressions for the radiation resistance are valid only for the short antennas. But for the dipoles of
length up to A/4 wavelengths and the monopoles of heights up to A/8 wavelengths, we can use these

formulae directly.

16
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1.10 Power radiated by the Half Wave Dipole and the Monopole

A Dipole antenna is a vertical radiator fed in the centre. It produces maximum radiation in the plane
normal to the axis. For such a dipole antenna, the length specified is the overall length.

The vertical antenna of height H=L/2, produces the radiation characteristics above the plane which is
similar to that produced by the dipole antenna of length L=2H. The vertical antenna is referred to as a
monopole.

In general antenna requires large amount of current to radiate large amount of power. To generate such a
large current at radio frequency is practically impossible. In case of Hertzian dipole the expression for Eand
H are derived assuming uniform current throughout the length. But we have studied that at the ends of
the antenna current is zero. In other words the current is not uniform throughout the length as it is
maximum at centre and zero at the ends. Hence practically Hertzian Dipole is not used. The practically used
antennas are half wave dipole (A/2) and quarter wave monopole (A/4).

The half wave dipole consists of two legs each of length L/2. The physical length of the half wave dipole at
the frequency of operation is (A/2) in the free space.

The quarter wave monopole consists of a single vertical leg erected on the perfect ground i.e. perfect
conductor. The length of the leg of the quarter wave monopole is (\/4).

For the calculation of electromagnetic fields, the assumed sinusoidal current distributions along the half
wave dipole and quarter wave monopole are as shown in figure 1.10.1 (a) and (b) respectively.

I H\ +H T ImsinB(H-2)

ImsinB(H-z)

R=r-zcos 0

=2H Z2 """ - =0 L7772 Perfect
/i : Reflecting
H T \ 0 :T / plane
v l H ImsinB(H+z) i_/,/‘\ ImsinB(H+z)
Figure 1.10.1 (a) Assumed sinusoidal current Figure 1.10.1 (b) Assumed sinusoidal current
distribution in half wave dipole distribution in quarter wave monopole

Consider the assumed sinusoidal current distribution in the quarter wave monopole and half wave dipole.
The current element Idz is placed at a distance z from z=0 plane. Let Im be the maximum value of the
current in the current element.

For a half wave dipole antenna, the total radiated power is given by

2(dLY
W:807Z' £7 Ieff

The effective length Letr=dL=2l/ 7 for sinusoidal current, therefore

2
W =807° Egj 12
i) -
For a half wave dipole the physical length I=A/2, then
2
W =80r" [gi} I,
T2 ] °

W =801 ;fWatts

and R = 8002

In actual the value of radiation resistance is around 73 Ohmes.
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For a Monopole antenna, the total radiated power will be equal to that of radiated by a short dipole i.e.
2
W =107> (%j I,
The effective length Lesi=dL=2h for monopole antenna, therefore
21

2
W =807’ (—] 1

2
W =407> [ﬁ} I?
y) eff

h 2
W~ 400(—} Ifff Watts
A) "

And the radiation resistance is given by

2
R ~ 400@) Q
2

1.11 Sine and Cosine Integral
Near field due to Sinusoidal Current Distribution

z 4 +H R1
Consider a dipole with sinusoidal current ] P
distribution as shown in figure 1.11.1. ,/" R
Let P be the point at which field is to be x]
calculated. The element length dh is ‘\!i\ h r
located at a distance h from origin. The ,7" > Y
lower and upper tips of the dipole are 1 | R,
located at —H and +H respectively. a
The distance between upper tip of dipole e
and point P is given by v -H Im

Figure 1.11.1. A Dipole with sinusoidal current distribution

R =\/(Z—H)2+y2 ..1.11.1(a)

The distance between lower tip of dipole and point P is given by

R =\/(Z+H)2+y2 ..1.11.1(b)

The distance between the element length dh and point P is given by

R =\(z=n) +)’ .1.11.1(c)

The distance between origin and point P is given by
2 2
R =yz'+y ..1.11.1(d)

The current distribution can be represented as
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I =1, sin f(H —h), for,h>0.....(a)
I =1 sin fS(H +h), for,h <O0.....(b)

..1.11.2
Using equations 1.11.1 and 1.11.2, the z component of the vector potential at point P is given by
] H—jB(R+h) _H - jB(R-h) 0 —jB(R=N) 0 iR+
A = {efﬂ” [S——dn-e" [“——an+e" [ < dh—e"" [ S——dn
jBr , R , R S o R ..1.11.3
—0Az —0A
Now B¢—,uH¢:(V><A)¢: 6z= 8Z=_ H,
op Oy .1.11.4
_J H ~jB(R+h) _H ~jB(R=h) 0 ~jB(R=h) 0 ~jB(R+h)
H,= "= Pﬁﬂjﬁ{e dh {’ﬂHji ‘ dhp+e" | 9 e dh - | 9 )¢ dh
Jj8r o 0y o 0y 0y R = 0y R
..1.11.5
Consider first integral term in equation 1.11.5
IJZ 0 { g PR } r,[ e P g I (REN) ye”'ﬂ(’“h)}d
il dh' = - h
2 3
ooy R ‘ R R ..1.11.6
Integrating the above equation
~iB(R+h) =i
_ it ¢
R(R+h—-2)
h=0
_ | e (e 1.11.7
R (R +H-2z) r(r—2z)
But R]Z_(H_Z)2:r2_z2:y2
Therefore,
H ~JB(R+h) ipH [ ]
Iﬁ{e o dh}:eJ - [1—H_Z]ejﬁ(R”H)—(lJrE)e_jﬂ’
o 0y R y o R, r ]
Similarly for other three integrals
H ~iB(R=h) ipH [ }
J-g{e JB(R dh}zej H [1+H—Z]€jﬂ(1elH)_(l_gje—jﬁr
o 0y R y o R, r |
0 . _ o r T
J. g{e JB(R=h) dh}=e JBH (1_H+Z]ejﬂ(R2+H) —(1—£je_]ﬁr
-H ay R y L R2 r a
0 ~JB(R+h) -ipH [ |
J‘g{e JB(R dh}:e jBH (1+H+Z)ejﬂ(RzH)_(l_Eje—jﬁr
-H ay R y L R2 r a
Therefore the overall magnetic field intensity is given by,
g - {e’“‘ e ZCOSﬂHe‘”’} ..1.11.8
?o4jx oy y y

We know the Maxwell’s equations,
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VXﬁza—:ja)gE or E:__(va) In free space.
ot joe
E},:-L% o ___1 0(H,) ..1.11.9
jos T joey Oy

But for ﬁ, H , is the only existing component, hence
vxﬁz%ZJrlMa_ ..1.11.10
oz 'y oy

Therefore by equation 1.11.9 and 1.11.10, we can write

_iBI —jBR, —jBR, —Jjpr
E = ],Bm{ye + 2 —2cosﬂHye

drewy| R R, r
—iBR PR, ~Jpr
E, :—j301r{e +& cos pH 2 } - 11111
1 2 r
, —He P z+He P _zcos fH e /" 1.11.12
. JSOIm[ ) B a1
y R y R, y r
301 A . )
H¢ _ J301 [e*]ﬂRl 4o PR —2COSﬂH€_"ﬁr] ..1.11.13
ny

From the above equations we can write that,
1. The term e /”® indicates that spherical wave is originating at the top of the antenna.
2. Similarly e /”* indicates that spherical wave is originating from

a) Bottom of the antenna if it is a dipole or

b) Lower tip of the antenna if it is a monopole.

3. The term e /*"indicates that spherical wave is originating from the centre of the antenna for dipole
and at the base if monopole.

4. The amplitude of the wave from centre of antenna depends on the length of the antenna(H), for
example for a half wave dipole or quarter wave monopole H=A/4, the amplitude becomes zero
because

cos fH = cos(z—ﬂ)(ij = cos(zj =0
A )\ 4 2

1.12 Near field(Induction Field) and Far Field(Radiation Field)

We know the magnetic field component is given by

H

_ Idlsin @ {Jr cos wt' B a)sina)t'}
" 4r r’ re .1.12.1
Amplitude | Term Il Term

(Induction Field) (Radiation Field)
It consist of two terms
(i) Induction (Near) Field: The first term varies inversely as square of the distance (i.e. 1/r?) and is known as
near field or induction field. It predominates at points near to the current element where r is small. The
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field is more effective near the current element only. It represents the energy stored in the magnetic field
surrounding the conductor. This energy is alternatively stores in the field and returned to the source
alternatively during each half cycle. The induction field is not so important from the radiation point of view
and therefore neglected.

(ii) Radiation (Far) Field: The second term varies inversely as distance (i.e. 1/r) and is known as the
Radiation Field or Far Field or the Distant Field, which accounts for the radiation of the Electromagnetic
waves from a conductor under the suitable conditions. This radiation field is of great importance at large
distance.

The radiation component of the magnetic field is produced by the alternating electric field and the electric
radiation components occur from the alternating magnetic field. The flow of current in the conductor
creates the local induction fields, whereas the radiation fields exist as a consequence of induction fields.
Near the conductor the magnetic field is in phase with the current in the conductor, whereas the electric
field varies in phase with the change on either end of the conductor element. In this region the Electric and
magnetic fields have, a phase difference of 7 /2 radians and are at right angles to each other in space i.e.
Ee and Hy are on phase in far field.

The radiation field Eg at r>>A is given by (from section 1.8)

_ Idlsinﬁ[ osin@t' coswt' sina)t}

Eo 4rs 2 3

2
cr cr wr

g sin @ {_ @sin wt’} (1/r? and 1/r3 terms are neglected)
=

dre c’r
wldl sin @sin wt' 27 fIdl sin @sin ot ' 1
Eg = — 4 = — 1 CcC =
mec.cr Ae or Jue
Jue
Idlsin @sin ot nldl sin @sin wt'
Ey=—— = P n= % =1207
2\/72,}" €
Y7,
607 1dl sin @sin a)(t - rj
c
E,=-
Ar .1.12.2
60 1dl
|E9| - 1
r ..1.12.3
Similarly at distance r>> A
ldlsin@| coswt' @sinwt' Ildlsin@| wsinaot' 1
4= 2 Or H, = - —=0
v r rc 4r rc 2
27 fIdl sin @sin wt'
H,=-
drcr
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Idl sin @sin a)(t _r)
H,=- <
2Ar
‘H ‘: Idl'sin @sin ot | Maximum value, when 6=90°
/ 2r | 1124
)
2Ar

..1.12.5
The equations 1.12.2 and 1.12.4 constitute the field present in the radiating wave from the current
element / d/ coswt.
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