
UNIT – 1

STRUCTURE OF DESKTOP COMPUTERS

The desktop computers are the computers which are usually found on a home or office desk. They consist of

processing unit, storage unit, visual display and audio as output units, and keyboard and mouse as input units.

Figure 1 shows these five functional

Figure 1. Units of a computer.

Input Unit - The input unit accepts the digital information from user with the help of input devices such as

keyboard, mouse, microphone etc. The information received from the input unit is either stored in the

memory for later use or immediately used by the arithmetic and logic unit to perform the desired operations.

Memory Unit - The memory unit is used to store programs and data. Usually, two types of memory devices

are used to form a memory unit: primary storage memory device and secondary storage memory device. The

primary memory, commonly called main memory is a fast memory used for the storage of programs and

active data. These memories are fast but they are small in capacities and expensive. Therefore, the computer

uses the secondary storage memories such as magnetic tapes, magnetic disks for the storage of large amount

of data.

Arithmetic and Logic Unit - The Arithmetic and Logic Unit (ALU) is responsible for performing arithmetic

operations such as add, subtract, division and multiplication and logical operations such as AND, OR, Inverting

etc.

Output Unit - The output unit sends the processed results to the user using output devices such as video

monitor, printer, plotter, etc. The video monitors display the output on the CRT screen whereas printers and

plotters give the hard- copy output.

Control Unit - The control unit co—ordinates and controls the- activities amongst the functional. The basic

function, of control unit is to fetch the instructions stored in the main memory, identify the operations and the

devices involved in it and accordingly generate control signals to execute the desired operations.

CPU (CENTRAL PROCESSING UNIT)

The CPU is the brain of the Computer system. It works as an administrator of a system. All the operations

within the system are supervised and controlled by CPU. It interprets and co-ordinates the instructions. The

data and instructions are temporarily stored in its memory unit. After performing Operation, the result of

operation can be stored in this memory unit.

Page no: 1

Figure 2: CPU and its interaction with other units

The results of operation are sent towards output unit for the user. Thus, CPU controls all internal and external

devices, performs arithmetic and logical operations, and controls the memory usage and control the sequence

of operations. For performing all these operations, the CPU has three subunits.

 Arithmetic and Logic Unit (ALU)

 Control Unit

 Memory (CPU registers)

GENERAL REGISTER ORGANIZATION:

CPU Registers - Register is a group of flip-flops which can be used to store a word. It is a high speed temporary

storage space for holding data, addresses and instructions during processing the instruction. Registers are not

referenced by their addresses; they are directly accessed. To perform execution of instruction, the processor

contains a number of registers used for temporary storage of data and some special function registers.

The special purpose registers include Program Counter (PC), Instruction Register (IR), Memory Address

Register (MAR) and Memory Data Register (MDR).

Program Counter (PC):- It is used to store the address of next instruction to be executed.

Instruction Register (IR):- It is used to hold the instruction that is currently being executed. The contents of IR

are available to the control unit, which generate the timing signals that control the various processing

elements involved in executing the instruction.

Memory Address Register [MAR] and Memory Data Register (MDR): - These registers are used to handle the

data transfer between the main memory and the processor.

Memory Address Register [MAR] :-The MAR holds the address of the main memory to or from which data is

to be transferred.

Memory Data Register [MDR] :-The MDR sometimes also called MBR (Memory Buffer Register) contains the

data to be written into or read from the addressed word of the main memory.

Accumulator (AC):- It holds the result generated by ALU.

General purpose registers - These are used to hold the operands for arithmetic and logic operations and/or

used to store the result of the operation. Since the access time of these registers is lowest, these are used to

store frequently used data.

Figure 3 shows the general Register organization for seven CPU registers. It shows that how registers are

selected and how data flow between register and ALU take place. Decoder is used to select a particular

Page no: 2

register. The output of each register is connected to two multiplexers (MUX) to form the two buses A and B.

The selection lines in each multiplexer select the input data for the particular bus. The A and B buses form the

two inputs of an Arithmetic Logic Unit (ALU). The operation select lines decide the micro operation to be

performed by ALU. The result of the micro- operation is available at the output bus. The output bus connected

to the inputs of all registers, thus by selecting a destination register it is possible to store the result in it.

Figure 3: General Register organization for CPU register

CONTROL WORD

The combined value of a binary selection inputs specifies the control word. There are 14 binary selection

inputs in the unit and their combined value specifies a Control word. Figure 4 shows the control Word

format. It consists of four fields SELA, SELB and SELREG contain three bits each and SELOPR field contains

four bits. Thus the total bits in the control word are 13-bits.

Figure 4: Format of control word

The three bits of SELA select a source registers of the A input of the ALU. The three bits of SELB select a

source registers of the B input of the ALU. The three bits of SELREG select a destination register using the

decoder. The four bits of SEL OPR select the operation to be performed by ALU.

Table 1: Encoding of Register Selection Fields

Binary Code SEL A SEL B SEL D

000 Input Input None

001 R1 R1 R1

010 R2 R2 R2

011 R3 R3 R3

100 R4 R4 R4

101 R5 R5 R5

110 R6 R6 R6

111 R7 R7 R7

Page no: 3

The encoding of the ALU operations for the CPU is specified in the table given below. The OPR field has five

bits and each operation is designated with a symbolic name.

Table 2: Encoding of ALU Operation

OPR Select Operation Symbol

00000 Transfer A TSFA

00001 Increment A INCA

00010 Add A+B ADD

00101 Subtract A-B SUB

00110 Decrement A DECA

01000 AND A and B AND

01010 OR A and B OR

01100 XOR A and B XOR

01110 Complement A COMA

10000 Shift Right A SHRA

11000 Shift Left A SHLA

STACK ORGANIZATION

The stack in the digital computer is a part of register unit or memory unit with a register that holds the

address for the stack. The part of register array or memory used for stack is called stack area and the

register used to hold the address of stack is called stack pointer. The value in the stack pointer always

points at the top data element in the stack.

1. Register Stack

Figure 5 word register stack

A stack can be placed in a portion of a memory unit or it can be organized as a collection of a finite number

of CPU registers. The Figure 5 shows the organization of a 32-word register stack. The stack pointer holds

the address of the register that is currently the top of stack. As shown in the Figure 5 four data elements 10,

20, 30 and 40 are placed in the stack. The data element 40 is on the top of stack therefore, the content of SP

is now 4.

2. Memory Stack

The operation of memory stack is exactly similar to the register stack. It is implemented using computer

memory instead of CPU register array. The number of registers in the CPU is limited and it restricts the size of

stack in the stack computer. But when stack is implemented using memory its size is extended upto the

memory addressing capacity of the CPU.

Page no: 4

INSTRUCTION FORMAT:

Computer has a variety of instruction code formats, it is the control unit within the CPU that interprets each

instruction code and provides the necessary control functions needed to process the instruction. The format

of an instruction is usually depicted in a rectangular box symbolizing the bits of the instruction as they appear

in memory words or in a control register given in figure 6. The bits of the instruction are divided into groups

called fields. These information fields of instructions are called elements of instruction & most common fields

found in instruction formats are:

Figure 6: Instruction Format

Operation code: - The operation code field in the instruction specifies the operation to be performed. The

operation is specified by binary code hence the name operation code or simply opcode.

Source / Destination operand: - The source/destination operand field directly specifies the source/destination

operand for the instruction.

Source operand address: - The operation specified by the instruction may require one or more operands. The

source operand may be in the CPU register or in the memory.

Destination operand address: - The operation executed by the CPU may produce result. Most of the time the

results are stored in one of the operand. Such operand is known as destination operands.

Next instruction address: - The next instruction address tells the CPU from where to fetch the next

instruction after completion of execution of current instruction.

Address Instructions

In these instructions, the locations of all operands are defined implicitly. Such instructions are found in

machines that store operands in a structure called a pushdown stack. A stack-organized computer does not

use an address field for the instructions ADD and MUL. The PUSH and POP instructions, however, need an

address field to specify the operand that communicates with the stack.

The following program shows how X = (A + B) * (C + D) will be written for a stack organized computer. (TOS

stands for top of stack.)

THREE-ADDRESS INSTRUCTIONS: Computers with three-address instruction formats can use each address

field to specify either a processor register or a memory operand. The program in assembly language that

evaluates X = (A + B) ∗ (C + D) is shown below,

ADD R1, A, B Rϭ ← M [A] + M [B]
ADD R2, C, D RϮ ← M [C] + M [D]
MUL X, R1, R2 M [X] ← Rϭ ∗ R2

TWO-ADDRESS INSTRUCTIONS: Two address instructions are the most common in commercial computers.

Here again each address field can specify either a processor register or a memory word. The program to

evaluate X = (A + B) ∗ (C + D) is as follows:

MOV R1, A R1 ← M [A]
ADD R1,B Rϭ ← Rϭ + M [B]
MOV R2, C RϮ ← M [C]
ADD R2, D RϮ ← RϮ + M [D]
MUL R1, RϮ Rϭ ← Rϭ∗R2

MOV X, R1 M [X] ← Rϭ
ONE-ADDRESS INSTRUCTIONS: One-address instructions use an implied accumulator (AC) register for all data

manipulation. The program to evaluate X = (A + B) ∗ (C + D) is as follows:

Opcode Operand Reference Operand Reference

4 bit 6 bit 6 bit

16 bit

Page no: 5

LOAD A AC ← M [A]
ADD B AC ← A [C] + M [B]
STORE T M [T] ← AC
LOAD C AC ← M [C]
ADD D AC ← AC + M [D]
MUL T AC ← AC ∗ M [T]

STORE X M [X] ← AC
ZERO-ADDRESS INSTRUCTIONS: A stack-organized computer does not use an address field for the instructions

ADD and MUL. The PUSH and POP instructions, however, need an address field to specify the operand that

communicates with the stack.

 The following program shows how X = (A + B) ∗ (C + D) will be written for a stack organized computer. PUSH A

TOS ← A

PUSH B TOS ← B
ADD TOS ← ;A + BͿ
PUSH C TOS ← C
PUSH D TOS ← D
ADD TOS ← ;C + DͿ
MUL TOS ← ;C + DͿ ∗ (A + B)

POP X M [X] ← TOS
The Ŷaŵe ͞zero-address͟ is giǀen to this type of computer because of the absence of an address field in the

computational instructions.

I/O SYSTEM

The central processing unit, memory unit and I/O unit are the hardware components/modules of the

computer. They work together with communicating each other and have paths for connecting the modules

together.

The terminal sends and receives serial information. Each quantity of information has eight bits of an

alphanumeric code. The serial information from the keyboard is shifted into the input register INPR. The serial

information for the printer is stored in the output register OUTR. These two register communicate with a

communication interface serially and with the AC in parallel. The flags are needed to synchronize the timing

difference between I/O device and the Computer.

The input-output configuration is shown in Figure 7.

Figure 7: Input-Output Configuration

Bus:

The collection of paths connecting the various modules is called the interconnection structure or Bus. A group

of wires called bus is used to provide necessary signals for communication between modules. A bus is a shared

transmission medium, it must only be used by one device at a time and when used to connect major computer

components (CPU, memory, I/O) is ͚Đalled a system bus.

The system bus is separated into three functional groups: data bus, address bus and control bus

Page no: 6

Data lines (data bus) - Move data between system modules. The data bus lines are bidirectional. CPU can read

data on these lines from a port, as well as send data out on these lines to a memory location or to a port.

Width is a key factor, It determines number of bytes that can be transferred in one cycle and hence the overall

system performance.

Address lines (address bus) - Designate source or destination of data on the data bus. It is a unidirectional

bus. Width determines the maximum possible memory capacity of the system. It also used to address I/O

ports. Typically: High -order bits select a particular module. Lower order bits select a memory location or I/0

ports within the module.

Control lines (Control bus) - Control access to use the data and address lines. Typical control lines include:

1. Memory Read and Memory write

2. I/O Read and [/0 Write
3. Transfer ACK
4. Bus Request and Bus Grant
5. Interrupt Request and Interrupt ACK
6. Clock & Reset

If one module wishes to send data to another, it must:

1. Obtain use of the bus

2. Transfer data via the bus

If one module wishes to request data from another, it must :

1. Obtain use of the bus
2. Transfer a request to the other module over control and address lines

3. Wait for second module to send data

Connecting I/O Devices to CPU and Memory

It shows that how I/0 devices are connected to CPU and memory. I/0 devices are interfaced to CPU through

I/O interface or I/O module. The I/O interface consists of circuit, which connect an I/O device to a CPU bus. On

one side of the interface we have the bus signals for address, data and control. On the other side we have a

data path with its associated controls to transfer data between the interface and the I/O device. Usually I/O

interface or I/O module is capable of interfacing more than one external device.

Since data, address and control buses are connected in parallel to CPU, memory and I/O the I/O module is

allowed to exchange data directly with memory without going through the processor, using Direct Memory-

Access (DMA). The bus interconnection scheme shown in Figure 7 supports following types of data transfers:

1. Memory to processor - Memory read operation

2. Process to memory – Memory write operation

3. Processor to I/O – I/O write operation
4. I/O to processor - I/O read operation
5. I/O to or from memory- DMA operation

Figure 8: Architecture of System Bus

Page no: 7

BUS STRUCTURE

 A more efficient scheme for transferring information between registers in a multiple- register configuration

is a common bus system.

 A bus structure consists of a set of common lines, one for each bit of a register, through which binary

information is transferred one at a time.

 Control signals determine which register is selected by the bus during each particular register transfer. A

common bus system can be constructed using multiplexers.

 These multiplexers select the source register whose binary information is then placed on the bus.

 The system bus is a cable which carries data communication between the major components of the

computer, including the microprocessor.

 The system bus consists of three different groups of wiring, called the data bus, control bus and address

bus.

REGISTER TRANSFER LANGUAGE

The symbolic notation used to describe the micro operation transfer among registers is called a register

transfer language. The terŵ ͞register traŶsfer͟ iŵplies the aǀailaďility of hardǁare logiĐ ĐirĐuits that ĐaŶ
perform stated micro operation and transfer the results to the operation to the same or another register.

Example:

MOV R1, R2

Here MOV is an Opcode, R1 is destination Register and R2 is source Register. In this Instruction Content of R2

is being transferred into Register R1.

The features of register transfer logic are:

1. Uses registers as a primitive component in the digital system instead of flip-flops and gates.

2. The information flow and processing tasks among the data stored in the registers is described in a

concise and precise manner.

3. Uses a set of expressions and statements which resemble the statements used in programming

languages.

4. The presentation of digital functions in register transfer logic is very user friendly.

The micro-operations used in the digital system can be classified as:

1. Register transfer micro-operations: The micro-operations that transfer information from one register to

another.

2. Arithmetic micro-operations: The micro-operations that perform arithmetic operations on numeric data

stored in registers.

3. Logic micro-operation: The micro-operations that perform bit manipulation operations on non-numeric

data stored in registers.

4. Shift micro-operations: The micro-operations that perform shift operations on data stored in registers.

Table 3: Examples of Micro operations for the CPU

Micro

operations

Symbolic Designation Control Word

SEL A SEL

B

SEL D OPR

R1<-R2 - R3 R2 R3 R1 SUB 010 011 001 00101

R4<-R4 V R5 R4 R5 R4 OR 100 101 100 01010

R6<-R6+1 R6 - R6 INCA 110 000 110 00001

R7<-R1 R1 - R7 TSFA 001 000 111 00000

Output<-R2 R2 - None TSFA 010 000 000 00000

Output<-Input Input - None TSFA 000 000 000 00000

R4<-sh1 R4 R4 - R4 SHLA 100 000 100 11000

R5<-0 R5 R5 R5 XOR 101 101 101 01100

Page no: 8

BUS AND MEMORY TRANSFER

Bus Transfer

A digital computer has many registers and it is necessary to provide data path between them to transfer

information from one register to another. If separate lines are used between each register there will be

excess number of wires and controlling of those wires make circuit complex. Therefore, in multiple-register

configuration a common bus system is used to transfer information between two registers.

Implementation of common bus using multiplexers

The Figure 8 shows the implementation of common bus system for four registers using multiplexers. Each

register has four bits, numbered 0 through 3 and they are routed through multiplexers to the common bus.

Here, four multiplexers are used to select four bits of the source register. Each multiplexer has four input

lines, two select lines and one output line. The four input lines of multiplexer 0 (MUX 0) are connected to the

bit 0 outputs of four registers such that bit 0 of register is connected to input 0, bit 0 of register 1 is connected

to input 1, bit 0 of register 2 is connected to input 2 and bit 0 of register 3 is connected to input 3. Similarly,

inputs for MUX 1 are connected to bit 1 outputs, inputs for MUX 2 are connected to bit 2, and inputs for MUX

3 are connected to bit 3 outputs of registers 0 through 3. To avoid the complexity of the diagram, only input

connections for MUX 3 is physically shown.

The two selection lines S1 and S0 are connected to the selection inputs of all four multiplexers. These lines

choose the four bits of one register and transfer them into the four-line common bus through OUT lines.

When S1S0 = 00, the input 0 of all four multiplexers are selected and applied to the outputs to transfer them

on the common bus. As a result a common bus receives the contents of register 0. Since the outputs of

register 0 are connected to the input 0 of the multiplexers. Similarly, the content of register 1 are transferred

on the common bus when S1S1. The Table below shows the register selection according to the status of S1

and S0 lines.

Table 4: Selection table

Figure 9. Computer bus System using multiplexer

S1 S0 Selected Register

0 0 Register 0

0 1 Register 1

1 0 Register 2

1 1 Register 3

Page no: 9

ADDRESSING MODES

Every instruction of a program has to operate on some data. An addressing mode is a way in which an operand

is specified in an instruction.

There are different ways in which an operand may be specified in an instruction.
1. Implied Mode: In implied addressing mode, the instruction itself specifies the data to be operated.

the implied addressing mode is also called implicit addressing mode, because there is no need to explicitly
specify an effective address for either the source or the destination.
 For example -͚͚ĐoŵpleŵeŶt aĐĐuŵulator͛͛

2. Immediate Mode: In this mode the operand is specified in the instruction itself. The actual operand to be
used in conjunction with the operation specified in the instruction is contained in the operand field.
Example: MOVE A, #20

3. Register Mode: In this mode the operands are in registers that reside within the CPU. The register required
is chosen from a register field in the instruction.
Example: MOV R1, R2

4. Register Indirect Mode: In this mode the instruction specifies a register that contains the address of the

operand and not the operand itself.

 Effective Address=R
Example: MOVE A, (R0)

5. Auto increment or Auto decrement Mode: After execution of every instruction from the data in memory it

is necessary to increment or decrement the register. This is done by using the increment or decrement

instruction.
Example: MOVE R2), + R0

 MOVE (R2), - R0

6. Direct Address Mode: In this mode the operand resides in memory and its address is given directly by the

address field of the instruction such that the effective address is equal to the address part of the

instruction. Example: MOVE A, 2000

7. Indirect Address Mode: The effective address of the operand is the contents of a register or main memory

location, location whose address appears in the instruction. Indirection is noted by placing the name of the

register or the memory address given in the instruction in parentheses.

Effective address = address part of instruction + context of CPU register

8. Relative Address Mode: In this mode the content of the program counter is added to the address part of

the instruction in order to obtain the effective address.

EA = PC + Address part of instruction

9. Indexed Addressing Mode: In this mode the effective address is obtained by adding the content of an index

register to the address part of the instruction.

 EA= offset + R
Example: MOVE 20 [R1], R2

10. Base Register Addressing Mode: In this mode the effective address is obtained by adding the content of a

base register to the part of the instruction. A base register is assumed to hold a base address and the

address field of the instruction, and gives a displacement relative to this base address. The base register

addressing mode is handy for relocation of programs in memory to another as required in multi

programming systems

Example: ADD AX, [BX+SI]

Page no: 10

Table 5: Eight Addressing Modes for load Instruction

Mode Assembly Convention Register Transfer

Direct Address LD ADR AC<-M[ADR]

Indirect Address LD @ADR AC<-M[M[ADR]]

Relative Address LD $ADR AC<-M[PC+ADR]

Immediate Operand LD #NBR AC<-NBR

Index Addressing LD ADR(X) AC<-M[ADR+XR]

Register LD R1 AC<-R1

Register Indirect LD(R1) AC<-M[R1]

Auto increment LD (R1) AC<-M[R1],R1<-R1+1

Page no: 11

