UNIT-2

1. **Context-Free Grammars:**
 - A context-free grammar or CFG is represented by a 4-tuple \((V, T, \Delta, S)\) where:
 - \(V\) → set of variables or non-terminals
 - \(T\) → set of terminals
 - \(\Delta\) → set of productions
 - \(S\) → starting variable

2. **Regular Grammars:**
 - A regular grammar is similar to CFG, a formal grammar that describes a regular language.
 - **Left regular grammar** → \(S \rightarrow Bw, \quad S \rightarrow a\)
 - **Right regular grammar** → \(S \rightarrow BwB, \quad B \rightarrow a\)

3. **Derivation Trees:**
 - A derivation tree (also called a parse tree) for a CFG \(G = (V, T, \Delta, S)\) is a tree satisfying the following conditions:
 - (i) Every vertex has a label which is a variable or terminal or \(\Lambda\)
 - (ii) The root has label \(S\)
 - (iii) The label of internal vertex is a variable.
 - (iv) If the vertices \(r_1, r_2, \ldots, r_k\) written with labels \(X_1, X_2, \ldots, X_k\) are the sons of vertex \(r\) with label \(A\), then \(A \rightarrow X_1X_2\ldots X_k\) is a production in \(P\).
 - (v) A vertex \(n\) is a leaf if its label is \(a \in \Sigma \) or \(\Lambda\); \(n\) is the only son of its father if its label is \(\Lambda\).

 - **Leftmost Derivation:** A derivation \(A \Rightarrow^* w\) is called a leftmost derivation if we apply a production only to the leftmost variable at every step.

 - **Rightmost Derivation:** A derivation \(A \Rightarrow^* w\) is called a rightmost derivation if we apply a production to the rightmost variable at every step.
4. Ambiguity in CFG:
A terminal string \(w \in L(\alpha) \) is ambiguous if there exist two or more derivation trees for \(w \) (or there exist two or more leftmost derivations of \(w \)).

5. Simplification of CFG:
 (1) Construction of reduced grammar:
 - Construction of set of variables
 - Construction of set of productions
 (2) Elimination of null production:
 A variable \(A \) in a context-free grammar is nullable if \(A \Rightarrow \lambda \)
 (3) Elimination of unit production:
 A unit production in CFG is a production of the form \(A \rightarrow B \), where \(A \) and \(B \) are variables in \(G \)
 (4) Removal of left recursion:
 (left recursion becomes problem in designing of compiler)
 Formula: \(A \rightarrow A_1 \alpha^1 / A_2 \alpha^2 / \cdots / A_n \alpha^n \beta_1 / \beta_2 / \cdots / \beta_n \)
 where \(A \) is a variable and \(\alpha^1, \alpha^2, \cdots, \alpha^n, \beta_1, \beta_2, \cdots, \beta_n \) are terminals
 then \(A \rightarrow \beta_1 A' / \beta_2 A' / \cdots / \beta_n A' \)
 \(A' \rightarrow \alpha^1 A' / \alpha^2 A' / \cdots / \alpha^n A' / \epsilon \) is a solution
 (5) Left factoring:
 For eg, \(A \rightarrow a A / a \)

6. Normal Forms:
 When the productions in \(G \) satisfy certain restrictions, then \(\alpha \) is said to be in a 'normal form'.

 Chomsky Normal Form (CNF):
 \(A \rightarrow a \) or \(A \rightarrow BC \) and \(S \rightarrow \lambda \)

 Greibach Normal Form (CNF):
 \(A \rightarrow a\alpha^* \) and \(S \rightarrow \lambda \) or \(a \rightarrow \text{terminal}, \alpha \rightarrow \text{variable} \)
 \(A \rightarrow a \)