UNIT 5

Tractable and Untractable Problems -

1. **Tractable Problems** -

 The set of all the problems that can be solved within polynomial amount of time using deterministic machine.

2. **Untractable Problems** -

 The set of all the problems that can't be solved within polynomial amount of time using deterministic machine.

3. **P class problem** -

 A language \(L \) is in class \(P \) if there exists some polynomial \(T(n) \) such that \(L = T(M) \) for some deterministic TM \(M \) of time complexity \(T(n) \).

4. **NP class problem** -

 A language \(L \) is in class \(NP \) if there is a non-deterministic TM \(M \) and a polynomial time complexity \(T(n) \) such that \(L = T(M) \) and \(M \) executes at most \(T(n) \) moves for every input \(w \) of length \(n \).

5. **Polynomial time reduction** -

 Let \(P_1 \) and \(P_2 \) be two problems. A reduction from \(P_1 \) to \(P_2 \) is an algorithm which converts an instance of \(P_1 \) to an instance of \(P_2 \). If the time taken by the algorithm is a polynomial \(p(n) \), \(n \) being the length of the input of \(P_1 \), then the reduction is called a polynomial time reduction \(P_1 \) to \(P_2 \).

 \[\rightarrow \] If there is a polynomial time reduction from \(P_1 \) to \(P_2 \) and if \(P_2 \) is in \(P \) then \(P_1 \) is in \(P \).

6. **NP-complete problem** -

 Let \(L \) be a language or problem in \(NP \). The \(L \) is NP-complete if

 (i) \(L \) is in \(NP \)

 (ii) \(L \) is an NP-complete if

 (iii) Every language \(L' \) in \(NP \) there exists a polynomial time reduction of \(L' \) to \(L \).
→ If P_1 is NP-complete, and there is a polynomial-time reduction of P_1 to P_2, then P_2 is NP-complete.

→ If some NP-complete problem is in P, then P = NP.

5. **NP-hard problems** -

These problems are at least as hard as the hardest problem in NP but not necessarily in NP.

The problem to which all NP-class problems are reducible in polynomial time is known as NP-hard problems.

6. **NP-complete problems** -

(i) SAT problem (satisfiability problem for boolean expressions)
(ii) Hamiltonian Path Problem (HPP)
(iii) Travelling Salesman Problem (TSP)
(iv) Vertex Cover Problem (VCP)
(v) Partition problem (PP)

Cook's theorem \rightarrow SAT is NP-complete.