PIPELINE PROCESSOR

1. Serial Pipeline Processor -
 A sequence of sub-tasks with serial precedence.

 ![Serial Pipeline Diagram]

 Synchronous model -

 ![Synchronous Model Diagram]

 Speedup = \(\frac{nK}{K+n-1} \)

 Efficiency = \(\frac{n}{k+n-1} \)

 Throughput = \(\frac{Nf}{K+n-1} \)

2. Non-serial Pipeline Processor -

 ![Non-serial Pipeline Diagram]

 Three stage pipeline

 Reservation table - show the path of data flow in pipeline

 Latency → No. of time units between two initiations of a pipeline

 Collision vector, state diagram, MA2 (Maximum Average latency)

 Speedy cycle, average latency

3. Instruction Pipeline design

 → Instruction execution phases -

 (1) Instruction fetch
 (2) Decode
 (3) Operand fetch
 (4) Execute
 (5) Write back phase
ILP → Instruction level parallelism

→ Mechanism for instruction pipeline -
 → Pre-fetch buffers -
 (1) Sequential buffers
 (2) Target buffers
 (3) Work buffers

→ Internal data forwarding -
 (1) Store-Store (STO)
 (2) Store-Load (MOVE)
 (3) Load-Load (MOVE)

Pipe/line Hazards -
(1) Structural Hazards
 (2) Data Hazards (RAW, WAW, WAR Hazards)
 (3) Control Hazards

Dynamic Instruction scheduling -
(1) Static - window
(2) Tomasulo algorithm

Branch Handling Techniques -
(1) Bit Dynamic Branch Prediction
(2) Branch Target Buffers
(3) Delayed Branch

Arithmetic Pipeline design -
(1) Static arithmetic pipeline (fixed + operation)
(2) Multifunctional arithmetic pipeline (more than one ALU operation)

Superscalar Pipeline design - m instruction issue rate, m ILP to fully utilize the pipeline

Superpipeline processor design -