
Class Notes

SEMESTER:-IT-IV SEM Subject Name :-DBMS

UNIT -I

Introduction

Database is a collection of related data. Database management system is software designed to assist the

maintenance and utilization of large scale collection of data. DBMS came into existence in 1960 by Charles.

Integrated data store which is also called as the first general purpose DBMS. Again in 1960 IBM brought IMS-

Information management system. In 1970 Edgar Codd at IBM came with new database called RDBMS. In

1980 then came SQL Architecture- Structure Query Language. In 1980 to 1990 there were advances in DBMS

e.g. DB2, ORACLE.

Data

• Data is ƌaǁ faĐt or figures or entity.

• WheŶ aĐtiǀities iŶ the oƌgaŶizatioŶ takes plaĐe, the effeĐt of these aĐtiǀities Ŷeed to ďe ƌeĐoƌded ǁhiĐh is
known as Data.

Information

Processed data is called information

The purpose of data processing is to generate the information required for carrying out the business

activities.

We can further define different functions of DBMS in details like.

● Data capture: Collection of data from the place of origination like taking attendance in the class using

at PDA.
● Data classification: Categorization of captured data based on different dimensions like size, type like

segregation of data images, audio, video.
● Data storage: The categorized data must be stored, and it must maintain data persistence and

integrity of it like we are storing details of students and it should remain same for years.
● Data arranging: Arrangement of the data in the database in a proper manner that will help the user

to understand how we are going to use it.
● Data Retrieval: Data required for retrieval so there must be mechanics through which they can be

retrieved efficiently. All the DBMS software provider that will support a common language SQL used

for the retrieval of data.
● Data maintenance: It is the database to keep it up-to-date. One of the important feature of the

DBMS through which data can be updated and remain useful for the user.
● Data Verification: Before storing the data, it must be checked based on the syntax and semantics to

avoid errors. To keep data persistence, it is mandatory to verify it before the storage and must store

in the database the way it supports.
● Data Editing: Providing tools that facilitate to perform change and update operation on DBMS.
● Data transcription: Providing facility to transfer one form to another. User requirement is changes

very frequently and in the digital world expectations from the users are also very high. So, DBMS

must provide facility to change it from one form to other.

Database

let us understand first about the what is a database. So, a database is basically a set of data and it contains

interrelated data. The database contains set of algorithm and rules through which data can be stored in it in

a systematic manner. So, all the data fields must be related to each other. For example, where it is used

suppose an organization from attendance, salary calculation and different allowances are given to them can

be done through the Database. To keep a record nowadays from billing an item to take attendance is the

classroom database is required.

Page no: 1

http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

Evolution of DBMS: -

File Oriented Approach: -

Computer System comes into the picture to store the records and after performing computation producing

information. As compared to the manual work done by the human being they are more accurate and fast

and secure also. Such system stores a group of records like department wise or class wise record and each

group is having separate files, or for a category. Such arrangements called file processing system and in

which each branch or department is having its own file and a dedicated application designed for to perform

an operation on it. This is mainly to keep a record of the students like fees details, result details, and contact

details and whenever some information is required then through application program it can be accessed.

Still, file processing approach of data storage and access is used but it has some drawbacks.

Database Management System

A Database Management System (DBMS) is a collection of program that enables user to create and maintain

a database.

The DBMS is hence a general-purpose software system that facilitates the process of defining constructing

and manipulating database for various applications.

Comparison Between File System & DBMS

DBMS File System

1. DBMS is a collection of data and user is not

required to write the procedures for

managing the database.

2. DBMS provides an abstract view of data that

hides the details.

3. DBMS is efficient to use since there are wide

varieties of sophisticated techniques to

store and retrieve the data.

4. DBMS takes care of Concurrent access using

some form of locking.

5. DBMS has crash recovery mechanism DBMS

protects user from the effects of system

failures.

6. DBMS has a good protection mechanism.

1.File system is a collection of data. Any management

with the file system, user has to

write the procedures

2. File system gives the details of the data

representation and Storage of data.

3. In File system storing and retrieving of data cannot

be done efficiently.

4. Concurrent access to the data in the file system has

many problems like

a. Reading the file while other deleting some

information, updating some information

5. File sǇsteŵ doesŶ’t pƌoǀide Đƌash ƌeĐoǀeƌǇ
mechanism.

Eg. While we are entering some data into the file if

System crashes then content of the file is lost.

6. Protecting a file under file system is very difficult.

Page no: 2

A database management system is, well, a system used to manage databases.

RDBMS

A relational database management system is a database management system used to manage relational

databases. A relational database is one where tables of data can have

relationships based on primary and foreign keys.

Advantages of DBMS

Due to its centralized nature, the database system can overcome the disadvantages of the file system-based

system

● Concurrent Use a database system provides facility to access database several users concurrently. Let

we understand it by taking an example that a movie online booking system database employee of

different branches access the database in a concurrent manner. Each employee can handle customers

at their individual desk, Able to see the seats available for the booking from the interface provided to

them.

● Structured data & details one of the important features of the database system is not only to store the

data and providing access to the database. But it also provides details about the data and how to access

and use it. Taking an example when you are going for an online form of exam then details about each

and every field is given, what type of data it accepts and format details also.

● Data Independence another important characteristic of the DBMS is data independence in which

application through which user can interact with the user is not dependent on the physical data storage.

So, if there is any change in the application program it will not affect the data stored in the database.

● Integrity of data This characteristic of the DBMS deals with one of the basic property of the data called

integrity, in which if some data is saved in the database and later on retrieved from the database it must

be same. This also covers restriction on the unauthorized access of the data that can make changes in

the data sets.

● Transaction of Data, a transaction is a set of actions that are done in a database to transfer it from one

consistent state to another. If it is not handled properly it may result in inconsistent state and loss of

data, so DBMS has certain constraints to maintain the basic properties of transaction like atomicity,

integrity, isolation, and durability.

● Data Persistence, this is one of the basic characteristics of the database because data can be retained in

the database for years and it should be in the same condition. In the banking system, a user will open

his account and lifelong maintain it, or a user has opted an LIC policy, or media claim policy.

A ŵoderŶ DBMS has the followiŶg characteristics −

Real-world entity − A ŵodeƌŶ DBMS is ŵoƌe ƌealistiĐ aŶd uses ƌeal-world entities to design its architecture.

It uses the behavior and attributes too. For example, a school database may use students as an entity and

their age as an attribute.

Relation-based tables − DBMS alloǁs eŶtities aŶd ƌelatioŶs aŵoŶg theŵ to foƌŵ taďles. A useƌ ĐaŶ
understand the architecture of a database just by looking at the table names.

 Isolation of data and application − A dataďase sǇsteŵ is eŶtiƌelǇ diffeƌeŶt thaŶ its data. A dataďase is aŶ
active entity, whereas data is said to be passive, on which the database works and organizes. DBMS also

stores metadata, which is data about data, to ease its own process.

 Less redundancy − DBMS folloǁs the ƌules of ŶoƌŵalizatioŶ, ǁhiĐh splits a ƌelatioŶ ǁheŶ aŶǇ of its attƌiďutes
is having redundancy in values. Normalization is a mathematically rich and scientific process that reduces

data redundancy.

Consistency − CoŶsisteŶĐǇ is a state ǁheƌe eǀeƌǇ ƌelatioŶ iŶ a dataďase ƌeŵaiŶs ĐoŶsisteŶt. Theƌe eǆist
methods and techniques, which can detect attempt of leaving database in inconsistent state.

Query Language − DBMS is equipped with query language, which makes it more efficient to retrieve and

manipulate data. A user can apply as many and as different filtering options as required to retrieve a set of

data. Traditionally it was not possible where file-processing system was used.

ACID Properties − DBMS folloǁs the ĐoŶĐepts of AtoŵiĐitǇ, CoŶsisteŶĐǇ, IsolatioŶ, aŶd DuƌaďilitǇ (ŶoƌŵallǇ

Page no: 3

shortened as ACID). These concepts are applied on transactions, which manipulate data in a database.

Multiuser and Concurrent Access − DBMS suppoƌts ŵulti-user environment and allows them to access and

manipulate data in parallel. Though there are restrictions on transactions when users attempt to handle the

same data item, but users are always unaware of them.

Multiple views − DBMS offers multiple views for different users. A user who is in the Sales department will

have a different view of database than a person working in the Production department. This feature enables

the users to have a concentrate view of the database according to their requirements.

Security − Featuƌes like ŵultiple ǀieǁs offeƌ seĐuƌitǇ to soŵe eǆteŶt ǁheƌe useƌs aƌe uŶaďle to aĐĐess data
of other users and departments. DBMS offers methods to impose constraints while entering data into the

database and retrieving the same at a later stage.

DBMS Architecture: -

The design of a DBMS depends on its architecture. It can be centralized or decentralized or hierarchical. The

architecture of a DBMS can be seen as either single tier or multi-tier. An n-tier architecture divides the whole

system into related but independent n modules, which can be independently modified, altered, changed, or

replaced.

In 1-tier architecture, the DBMS is the only entity where the user directly sits on the DBMS and uses it. Any

changes done here will directly be done on the DBMS itself. It does not provide handy tools for end-users.

Database designers and programmers normally prefer to use single-tier architecture.

If the architecture of DBMS is 2-tier, then it must have an application through which the DBMS can be

accessed. Programmers use 2-tier architecture where they access the DBMS by means of an application.

Here the application tier is entirely independent of the database in terms of operation, design, and

programming.

3-tier Architecture

Database (Data) Tier − At this tier, the database resides along with its query processing languages. We also

have the relations that define the data and their constraints at this level.

Application (Middle) Tieƌ − At this tieƌ ƌeside the appliĐatioŶ server and the programs that access the

database. For a user, this application tier presents an abstracted view of the database. End-users are

unaware of any existence of the database beyond the application. At the other end, the database tier is not

aware of any other user beyond the application tier. Hence, the application layer sits in the middle and acts

as a mediator between the end-user and the database.

User (Presentation) Tier − EŶd-users operate on this tier and they know nothing about any existence of the

database beyond this layer. At this layer, multiple views of the database can be provided by the application.

All views are generated by applications that reside in the application tier.

 DBMS Three Tier Architecture

Page no: 4

DBMS Architecture Component: -

DBMS Architecture Component

Database Users:

Users are differentiated by the way they expect to interact with the system:

Application programmers:

Application programmers are computer professionals who write application programs. Application

programmers can choose from many tools to develop user interfaces.

Rapid application development (RAD) tools are tools that enable an application programmer to construct

forms and reports without writing a program.

Sophisticated users:

Sophisticated users interact with the system without writing programs. Instead, they form their requests in

a database query language.

Specialized users:

Specialized users are sophisticated users who write specialized database applications that do not fit into the

traditional data-processing framework.

Naïve users:

Naive users are unsophisticated users who interact with the system by invoking one of the application

programs that have been written previously.

Database Administrator:

Coordinates all the activities of the database system. The database administrator has a good understanding

of the eŶteƌpƌise’s iŶfoƌŵatioŶ ƌesouƌĐes aŶd Ŷeeds.

Page no: 5

Query Processor:

The query processor will accept query from user and solves it by accessing the database.

Parts of Query processor:

DDL interpreter

This will interpret DDL statements and fetch the definitions in the data dictionary.

DML compiler

a. This will translates DML statements in a query language into low level instructions that the query

evaluation engine understands.

b. A query can usually be translated into any of a number of alternative evaluation plans for same query

result DML compiler will select best plan for query optimization.

Query evaluation engine

This engine will execute low-level instructions generated by the DML compiler on DBMS.

Storage Manager/Storage Management:

A storage manager is a program module which acts like interface between the data stored in a database and

the application programs and queries submitted to the system.

The storage manager components include:

Authorization and integrity manager: Checks for integrity constraints and authority of users to access data.

Transaction manager: Ensures that the database remains in a consistent state although there are system

failures.

File manager: Manages the allocation of space on disk storage and the data structures used to represent

information stored on disk.

Buffer manager: It is responsible for retrieving data from disk storage into main memory. It enables the

database to handle data sizes that are much larger than the size of main memory.

Data structures implemented by storage manager.

Data files: Stored in the database itself.

Data dictionary: Stores metadata about the structure of the database.

Indices: Provide fast access to data items.

Data Models

Data models define how the logical structure of a database is modelled. Data Models are fundamental

entities to introduce abstraction in a DBMS. Data models define how data is connected to each other and

how they are processed and stored inside the system.

The very first data model could be flat data models, where all the data used are to be kept in the same plane.

Earlier data models were not so scientific; hence they were prone to introduce lots of duplication and update

anomalies.

There are many kinds of data models. Some of the most common ones include:

● Hierarchical database model

● Relational model

● Network model

● Object-oriented database model

● Entity-relationship model

● Document model

● Entity-attribute-value model

● Star schema

● The object-relational model, which combines the two that make up its name.

The most common model, the relational model sorts data into tables, also known as relations, each of which

consists of columns and rows. Each column lists an attribute of the entity in question, such as price, zip code,

or birth date. Together, the attributes in a relation are called a domain. A particular attribute or combination

of attributes is chosen as a primary key that can be referred to in other tables, ǁheŶ it’s Đalled a foƌeigŶ keǇ.

Each row, also called a tuple, includes data about a specific instance of the entity in question, such as a

Page no: 6

particular employee.

The model also accounts for the types of relationships between those tables, including one-to-one, one-to-

many, and many-to-ŵaŶǇ ƌelatioŶships. Heƌe’s aŶ eǆaŵple:

Relational model: -

Within the database, tables can be normalized, or brought to comply with normalization rules that make the

database flexible, adaptable, and scalable. When normalized, each piece of data is atomic, or broken into

the smallest useful pieces.

Relational databases are typically written in Structured Query Language (SQL). The model was introduced

by E.F. Codd in 1970.

The ŵaiŶ highlights of this ŵodel aƌe −
● Data is stored in tables called relations.

● Relations can be normalized.

● In normalized relations, values saved are atomic values.

● Each row in a relation contains a unique value.

● Each column in a relation contains values from a same domain.

Hierarchical model

The hierarchical model organizes data into a tree-like structure, where each record has a single parent or

root. Sibling records are sorted in a particular order. That order is used as the physical order for storing the

database. This model is good for describing many real-world relationships.

Page no: 7

Network model

The network model builds on the hierarchical model by allowing many-to-many relationships between

linked records, implying multiple parent records. Based on mathematical set theory, the model is

constructed with sets of related records. Each set consists of one owner or parent record and one or more

member or child records. A record can be a member or child in multiple sets, allowing this model to convey

complex relationships.

Object-oriented database model

This model defines a database as a collection of objects, or reusable software elements, with associated

features and methods. There are several kinds of object-oriented databases:

A multimedia database incorporates media, such as images, that could not be stored in a relational database.

A hypertext database allows any object to liŶk to aŶǇ otheƌ oďjeĐt. It’s useful foƌ oƌgaŶiziŶg lots of dispaƌate
data, ďut it’s Ŷot ideal foƌ ŶuŵeƌiĐal aŶalǇsis.
The object-oriented database model is the best known post-relational database model, since it incorporates

taďles, ďut isŶ’t liŵited to tables. Such models are also known as hybrid database models.

Object-relational model

This hybrid database model combines the simplicity of the relational model with some of the advanced

functionality of the object-oriented database model. In essence, it allows designers to incorporate objects

into the familiar table structure.

Languages and call interfaces include SQL3, vendor languages, ODBC, JDBC, and proprietary call interfaces

that are extensions of the languages and interfaces used by the relational model.

Page no: 8

Entity-relationship model

This model captures the relationships between real-ǁoƌld eŶtities ŵuĐh like the Ŷetǁoƌk ŵodel, ďut it isŶ’t
as diƌeĐtlǇ tied to the phǇsiĐal stƌuĐtuƌe of the dataďase. IŶstead, it’s ofteŶ used foƌ desigŶiŶg a dataďase

conceptually.

Here, the people, places, and things about which data points are stored are referred to as entities, each of

which has certain attributes that together make up their domain. The cardinality, or relationships between

entities, are mapped as well.

NoSQL database models

In addition to the object database model, other non-SQL models have emerged in contrast to the relational

model: The graph database model, which is even more flexible than a network model, allowing any node to

connect with any other. The multi valued model, which breaks from the relational model by allowing

attributes to contain a list of data rather than a single data point.

The document model, which is designed for storing and managing documents or semi-structured data,

rather than atomic data.

Schema and Instance in DBMS

Design of a database is called the schema. Schema is of three types:

 Physical schema: - The design of a database at physical level is called physical schema, how the data

stored in blocks of storage is described at this level.

 Logical schema: - Design of database at logical level is called logical schema, programmers and database

administrators work at this level, at this level data can be described as certain types of data records gets

stored in data structures, however the internal details such as implementation of data structure is hidden

at this level (available at physical level).

 View schema: - Design of database at view level is called view schema. This generally describes end user

interaction with database systems.

Instances: - The data stored in database at a particular moment of time is called instance of database.

Database schema defines the variable declarations in tables that belong to a particular database the value

Page no: 9

of these variables at a moment of time is called the instance of that database.

Data Independence

A dataďase sǇsteŵ ŶoƌŵallǇ ĐoŶtaiŶs a lot of data iŶ additioŶ to useƌs’ data. Foƌ eǆaŵple, it stoƌes data
about data, known as metadata, to locate and retrieve data easily. It is rather difficult to modify or update

a set of metadata once it is stored in the database. But as a DBMS expands, it needs to change over time to

satisfy the requirements of the users.

Logical Data Independence

 Logical data is data about database, that is, it stores information about how data is managed inside. For

example, a table (relation) stored in the database and all its constraints, applied on that relation.

Logical data independence is a kind of mechanism, which liberalizes itself from actual data stored on the

disk. If we do some changes on table format, it should not change the data residing on the disk.

Physical Data Independence

All the schemas are logical, and the actual data is stored in bit format on the disk. Physical data independence

is the power to change the physical data without impacting the schema or logical data.

Foƌ eǆaŵple, iŶ Đase ǁe ǁaŶt to ĐhaŶge oƌ upgƌade the stoƌage sǇsteŵ itself − suppose ǁe ǁaŶt to ƌeplaĐe
hard-disks ǁith SSD − it should Ŷot haǀe aŶǇ iŵpaĐt oŶ the logiĐal data oƌ sĐheŵas. ƌeƋuiƌeŵeŶts of the
users. If the entire data is dependent, it would become a tedious and highly complex job.

DBA

A data administration (also known as a database administration manager, data architect, or information

center manager) is a high-level function responsible for the overall management of data resources in an

organization. In order to perform its duties, the DA must know a good deal of system analysis and

programming.

These are the functions of a data administrator (not to be confused with database administrator

functions):

1. Data policies, procedures, standards

2. Planning- development of organization's IT strategy, enterprise model, cost/benefit model, design of

database environment, and administration plan.

Page no: 10

3. Data conflict (ownership) resolution

4. Data analysis- Define and model data requirements, business rules, operational requirements, and

maintain corporate data dictionary

5. Internal marketing of DA concepts

6. Managing the data repository

E-R Diagram

ER Model is represented by means of an ER diagram. Any object, for example, entities, attributes of an entity,

relationship sets, and attributes of relationship sets, can be represented with the help of an ER diagram.

Entity

Entities are represented by means of rectangles. Rectangles are named with the entity set they represent.

EX. Student, Faculty, Course

Attributes

Attributes are the properties of entities. Attributes are represented by means of ellipses. Every ellipse

represents one attribute and is directly connected to its entity (rectangle).

3) Relationship

A Relationship describes relations between entities. Relationship is represented using diamonds.

There are three types of relationship that exist between Entities.

● Binary Relationship

● Recursive Relationship

● Ternary Relationship

Binary Relationship

Binary Relationship means relation between two Entities. This is further divided into three types.

 One to One: This type of relationship is rarely seen in real world.

Page no: 11

The above example describes that one student can enroll only for one course and a course will also have

only one Student. This is not what you will usually see in relationship.

 One to Many: It reflects business rule that one entity is associated with many number of same entity.

The example for this relation might sound a little weird, but this means that one student can enroll to many

courses, but one course will have one Student.

The arrows in the diagram describes that one student can enroll for only one course.

 Many to One: It reflects business rule that many entities can be associated with just one entity. For

example, Student enrolls for only one Course but a Course can have many Students.

 Many to Many:

The above diagram represents that many students can enroll for more than one courses.

Recursive Relationship

When an Entity is related with itself it is known as Recursive Relationship.

Ternary Relationship

Relationship of degree three is called Ternary relationship.

Here we are going to design an Entity Relationship (ER) model for a college database.

we have the following statements.

● A college contains many departments

● Each department can offer any number of courses

● Many instructors can work in a department

● An instructor can work only in one department

● For each department, there is a Head

● An instructor can be head of only one department

● Each instructor can take any number of courses

● A course can be taken by only one instructor

● A student can enroll for any number of courses

● Each course can have any number of students

Step 1: Identify the Entities

What are the entities here?

From the statements given, the entities are

Department

Course

Instructor

Student

Step 2: Identify the relationships

Page no: 12

● One department offers many courses. But one particular course can be offered by only one

department. hence the cardinality between department and course is One to Many (1:N)

● One department has multiple instructors. But instructor belongs to only one department. Hence the

cardinality between department and instructor is One to Many (1:N)

● One department has only one head and one head can be the head of only one department. Hence

the cardinality is one to one. (1:1)

● One course can be enrolled by many students and one student can enroll for many courses. Hence

the cardinality between course and student is Many to Many (M:N)

● One course is taught by only one instructor. But one instructor teaches many courses. Hence the

cardinality between course and instructor is Many to One (N :1)

Step 3: Identify the key attributes

● "Departmen_Name" can identify a department uniquely. Hence Department Name is the key

attribute for the Entity "Department".

● Course_ID is the key attribute for "Course" Entity.

● Student_ID is the key attribute for "Student" Entity.

● Instructor_ID is the key attribute for "Instructor" Entity.

Step 4: Identify other relevant attributes

● For the department entity, other attributes are location

● For course entity, other attributes are course_name, duration

● For instructor entity, other attributes are first_name, last name, phone

● For student entity, first_name, last_name, phone

Step 5: Draw complete ER diagram

By connecting all these details, we can now draw ER diagram as given below.

Page no: 13

