UNIT-II

Relational algebra is a procedural query language, which takes instances of relations as input and yields
instances of relations as output. It uses operators to perform queries. An operator can be either unary or
binary. They accept relations as their input and yield relations as their output. Relational algebra is
performed recursively on a relation and intermediate results are also considered relations.

In the formal relational model terminology, a row is called a tuple, a column header is called an attribute,
and the table is called a relation. The data type describing the types of values that can appear in each
column is represented by a domain of possible values. We now define these terms—domain, tuple,
attribute, and relation formally.

Domains, Attributes, Tuples, and Relations

Deposit Relation Customer Relation
bname Account | Ename | Balance Ename Street City
Bhanwarkuwan | SBI1200 | Ram 5000 Ramesh MG road | Indore
Tilak Nagar SBI1238 | Amit | 1000 Jhon RNT Marg | Indore

e It has four attributes.
e For each attribute there is a permitted set of values, called the domain of that attribute.
e E.g.the domain of bname is the set of all branch names.
Let D1 denote the domain of bname, and £22, L5 and D4 the remaining attributes' domains respectively.

A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as far
as the formal relational model is concerned. A common method of specifying a domain is to specify a data
type from which the data values forming the domain are drawn. It is also useful to specify a name for the
domain, to help in interpreting its values. Some examples of domains follow:

e Usa_phone_numbers. The set of ten-digit phone numbers valid in the United States.

e Local_phone_numbers. The set of seven-digit phone numbers valid within a particular area code in
the United States. The use of local phone numbers is quickly becoming obsolete, being replaced by
standard ten-digit numbers.

A relation schema R, denoted by R(A1,A2,...,An),
is made up of a relation name R and a list of attributes, A1,A 2, ..., An. Each attribute A i is the name of
a role played by some domain D in the relation schema R. D is called the domain of A i and is denoted by
dom (Ai). A relation schema is used to describe a relation R is called the name of this relation. The degree
(or arity) of a relation is the number of attributes n of its relation schema.

Using the datatype of each attribute, the definition is sometimes written as:

STUDENT (Name: string, Ssn: string, Homophone: string, Address: string, Office phone: string, Age: integer,
Gpa: real)

Characteristics of Relations
Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Mathematically, elements of a set
have no order among them hence, tuples in a relation do not have any particular order.

Ordering of Values within a Tuple and an Alternative Definition of a Relation. According to the preceding
definition of a relation, an n-tuple is an ordered list of n values, so the ordering of values in a tuple and hence
of attributes in a relation schema is important.

Values and NULLs in the Tuples. Each value in a tuple is an atomic value that is, it is not divisible into

Page no: 1

http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

components within the framework of the basic relational model. Hence, composite and multivalued
attributes are not allowed. An important concept is that of NULL values, which are used to represent the
values of attributes that may be unknown or may not apply to a tuple.

Relational Model Notation
A relation schema R of degree nis denoted by R(A1,A2,...,An).

The uppercase letters Q, R, S denote relation names.

The lowercase letters q, r, s denotes relation states.

The letters t, u, v denotes tuples.

In general, the name of a relation schema such as STUDENT also indicates the current set of tuples
in that relation—the current relation state—whereas STUDENT (Name, Ssn, ...) refers only to the
relation schema.

e An attribute A can be qualified with the relation name R to which it belongs by using the dot notation
R.A—for example, STUDENT. Name or STUDENT. Age. This is because the same name may be used
for two attributes in different relations.

Relational Model Constraints and Relational Database Schemas

Constraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model-based constraints or
implicit constraints. Example: In the relational model, no two tuples in a relation can be duplicates. Why?
Because a relation is a set of tuples, as opposed to a bag/multiset or a sequence.

2. Constraints that can be directly expressed in schemas of the data model, typically by specifying them in
the DDL. We call these schema-based constraints or explicit constraints.

3.Constraints that cannot be directly expressed in the schemas of the data model, and hence must be
expressed and enforced by the application programs. We call these application-based or semantic
constraints or business rules.

Types of Schema based Constraints

Domain Constraints
Domain constraints specify that within each tuple, the value of each attribute A must be an atomic value
from the domain dom(A).

Key Constraints and Constraints on NULL Values
In the formal relational model, a relation is defined as a set of tuples. By definition, all elements of a set are
distinct; hence, all tuples in a relation must also be distinct.

A super key SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the
same value for SK. Every relation has at least one default super key—the set of all its attributes. A super key
can have redundant attributes, however, so a more useful concept is that of a key, which has no redundancy.

A relation schema may have more than one key. In this case, each of the keys is called a candidate key. For
example, the CAR relation has (Licence_no Eng_sr_no Model Make_year model) two candidate keys:
License_number and Engine_serial_number . It is common to designate one of the candidate keys as the
primary key of the relation. This is the candidate key whose values are used to identify tuples in the relation.

Relational Databases and Relational Database Schemas

The definitions and constraints we have discussed so far apply to single relations and their attributes. A
relational database usually contains many relations, with tuples in relations that are related in various ways.

Page no: 2

In this section, we define a relational database and a relational database schema.

A relational database schema S is a set of relation schemas S ={R 1, R 2, ..., R m} and a set of integrity
constraints IC. A relational database state 10 DB of S is a set of relation states DB={r 1, r 2, ..., r m} such that
each riis a state of R i and such that the r i relation states satisfy the integrity constraints specified in IC.
Below Figure shows a relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,
DEPT_LOCATIONS, PROJECT, WORKS_ON/, DEPENDENT }. The underlined attributes represent primary keys.

EMPLOYEEE

Fname | Minit | Lname | Ssh Bdata | Address | Sex Salary | Super_ssn | Dno

DEPARTMENT

‘ DNAME ‘ Dnumber | Mgr_ssn Mgr_str_Date

DEPT_ LOCATIONS

Dnumber DLocation
PROIJECT
Pname Pnumber Plocation Dnum

Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This is because the primary key
value is used to identify individual tuples in a relation. Having NULL values for the primary key implies that
we cannot identify some tuples. For example, if two or more tuples had NULL for their primary keys, we may
not be able to distinguish them if we try to reference them from other relations.

The referential integrity constraint is specified between two relations and is used to maintain the
consistency among tuples in the two relations. Informally, the referential integrity constraint states that a
tuple in one relation that refers to another relation must refer to an existing tuple in that relation.

[ERMFLOTEEE
[Frismme MAiina Loy mrriae _ﬁ'* Besks r Addereus Sem |- Salary Tiup-ﬂ-__. |..|.'|' Dies
DEPARTAMENT =
I_ orMAaAME Oervis s beper g _sur Eigr_str_Dwte
oA
DEFPT _ LOCA THROMS
| nm-hhT DlLocatisn |
FROFELCT
|_Fl-|-r|rl-; | Prumibser J?l-ﬁl-:--ﬂ_:nn Dirvim
WORKES _OM |
Ezsn [Pne Houn
— =
PEFENLEST
| _E!:!-rl:ll G peared vt _naaerens | Saw Bdate Relaticmship

Page no: 3

The relational algebra is very important for several reasons. First, it provides a formal foundation for
relational model operations. Second, and perhaps more important, it is used as a basis for implementing
and optimizing queries in the query processing and optimization modules that are integral parts of relational
database management systems (RDBMSs).

Difference Between Calculus & algebra

the algebra defines a set of operations for the relational model, the relational calculus provides a higher-
level declarative language for specifying relational queries. A relational calculus expression creates a new
relation. In a relational calculus expression, there is no order of operations to specify how to retrieve the
guery result only what information the result should contain.

The fundamental operations of relational algebra are as follows -
® Select

Project

Union

Set different

Cartesian product

Rename

We will discuss all these operations in the following sections.

Select Operation (o)
It selects tuples that satisfy the given predicate from a relation.

Notation - o(r)
Where o stands for selection predicate and r stands for relation. p is propositional logic formula which may
use connectors like and, or, and not. These terms may use relational operators like - =, #, 2, <, >, <.

For example -

osubject = "database"(Books)

Output — Selects tuples from books where subject is 'database’.

osubject = "database" and price = "450"(Books)

Output - Selects tuples from books where subject is 'database' and 'price' is 450.

osubject = "database" and price = "450" or year > "2010"(Books)

Output — Selects tuples from books where subject is 'database’ and 'price' is 450 or those books published
after 2010.

Project Operation ()
It projects column(s) that satisfy a given predicate.

Notation - TTA1, A2, An (r)

Where Al, A2, An are attribute names of relation r.
Duplicate rows are automatically eliminated, as relation is a set.

For example -
TTsubject, author (Books)
Selects and projects columns named as subject and author from the relation Books.

Union Operation (V)
It performs binary union between two given relations and is defined as -

Page no: 4

rUs={t|tErort€s}
Notation-rUs

Where r and s are either database relations or relation result set (temporary relation).
For a union operation to be valid, the following conditions must hold -

r, and s must have the same number of attributes.

Attribute domains must be compatible.

Duplicate tuples are automatically eliminated.

TT author (Books) U TT author (Articles)

Output — Projects the names of the authors who have either written a book or an article or both.

Set Difference (-)
The result of set difference operation is tuples, which are present in one relation but are not in the second
relation.

Notation-r-s
Finds all the tuples that are present in r but not in s.

TT author (Books) - TT author (Articles)
Output — Provides the name of authors who have written books but not articles.

Cartesian Product (X)
Combines information of two different relations into one.

Notation-rXs
Where r and s are relations and their output will be defined as -

rXs={qt|g€randtes}

cauthor = 'tt'(Books X Articles)
Output - Yields a relation, which shows all the books and articles written by tt.

Rename Operation (p)
The results of relational algebra are also relations but without any name. The rename operation allows us
to rename the output relation. 'rename’ operation is denoted with small Greek letter rho p.

Notation - p x (E)

Where the result of expression E is saved with name of x.
Additional operations are -
e Setintersection
® Assignment
e Natural join
We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE
on two union-compatible relations R and S as follows:
m UNION: The result of this operation, denoted by R U S, is a relation that includes all tuples that are either
inR orin Sorinboth R andS. Duplicate tuples are eliminated.
m INTERSECTION: The result of this operation, denoted by R n S, is a relation that includes all tuples that are
in both RandS.
m SET DIFFERENCE (or MINUS): The result of this operation, denoted by R —§S, is a relation that includes all
tuples that are in R but not in S.
The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

Page no: 5

(b) STUDENT U INSTRUCTOR. (c) STUDENT n INSTRUCTOR. (d) STUDENT - INSTRUCTOR.
(e) INSTRUCTOR - STUDENT.

CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN—which is denoted by X.
This is also a binary set operation, but the relations on which it is applied do not have to be union compatible.
The JOIN operation, denoted by, is used to combine related tuples from two relations into single “longer”
tuples. This operation is very important for any relational database with more than a single relation because
it allows us to process relationships among relations.

DEPT_MGR& DEPARTMENT D<! mgr ssn=snn EMPLOYEE
RESULT < TTpame,tname (DEPT_MGR)

{(a) STUDENT INSTRUCTOR
Fn Ln Fname Lname () Fn Ln
Susan Yao John Smith Susan Yao
Ramesh Shah Ricardo Browne Ramesh Shah
Johnny Kohler Susan Yao Johnny Kohler
Barbara Jones Francis Johnson Barbara Jones
Ay Ford Ramesh Shah Ay Ford
Jimmy Wang Jimimy Wang
Emest Gilbert Emest Gilbert
John Smith
Ricardo Browne
Francis Johnson
(<) Fn Ln () Fn Ln (e) Fname Lname
Susan Yao Johnny Kohler John Smith
Ramesh Shah Barbara Jones Ricardo Browne
Aarmny Ford Francis Johnson
Jimimy Wang
Ernest Gilbert

Variations of JOIN: The EQUIJOIN and NATURAL JOIN
The most common use of JOIN involves join conditions with equality comparisons only. Such a JOIN, where
the only comparison operator used is =, is called an EQUIJOIN.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of join attributes)
have the same name in both relations. If this is not the case, a renaming operation is applied first.
PROJ_DEP DEPT_LOCS & DEPARTMENT * DEPT_LOCATIONS.

DEPT_LOCS
Dname Dnumber Mgr_ssn Mgr_start_date Location
Headquarters 1 888665555 1981-06-19 Houston
Administration 4 987654321 1995-01-01 Stafford
Research 5 333445555 1988-05-22 Bellaire
Research 5 333445555 1988-05-22 Sugarland
Research 5 33344555656 1988-05-22 Houston

The DIVISION Operation

The DIVISION operation, denoted by +, is useful for a special kind of query that sometimes occurs in database
applications. An example is Retrieve the names of employees who work on all the projects that ‘John Smith’

works on.

Page no: 6

SMITH € O fname =thon' AND Lhame = 'sptnr (EMPLOYEE)
SMITH_PNOS € Tt pno (WORKS_ON PX{ gssn=ssn SMITH)

PURPOSE NOTATION
SELECT Selects all tuples that satisfy the selection condition from a | o<selection
relation R. condition>(R)
PROJECT Produces a new relation with only some of the attributes
of R, and removes duplicate tuples. ni<attribute list>(R)
THETA JOIN Produces all combinations of tuples from R and R1 2 that
satisfy the join condition. R1 <join condition>
Produces all the combinations of tuples from R1 and R2
EQUIJOIN that satisfy a join condition with only equality

comparisons.

R1 <join condition>

NATURAL JOIN

Same as EQUIJOIN except that the join attributes of R2 are
not included in the resulting relation; if the join attributes
have the same names, they do not have to be specified at

R1*<join condition>
R2, OR R1* (<join
attributes 1>),

Produces a relation that includes all the tuples in R1 or R2

UNION or both R1 and R2; R1 and R2 must be union-compatible.
R1 UR2
Produces a relation that includes all the tuples in both R1
INTERSECTION | and R2; R1 and R2 must be union-compatible.
R1 N R2
Produces a relation that includes all the tuples in R1 that
DIFFERENCE are not in R2; R1 and R2 must be union-compatible.
R1-R2
Produces a relation that has the attributes of R1 and R2
CARTESIAN | and includes as tuples all possible combinations of tuples
PRODUCT | fromR1and R2. R1x R2
Produces a relation R(X) that includes all tuples t[X] in
DIVISION R1(Z) that appear in R1 in combination with every tuple

from R(Y), where Z=XUY.

R1(Z) + R2(Y)

Example on Relational Algebra

Page no:

7

EMPLOYEE
Fname Minit | Lname Ssn Bdate Address Sex |(Salary | Super_ssn | Dno
John B Smith 123456789 | 1965-01-02 (731 Fondren, Houston, TX| M (30000 333445555 5
Franklin T Wong 333445555 | 1955-12-08 |638 Voss, Houston, TX M |40000 |BBBE665555 5
Alicia J Zelaya 999887777 (1968-01-192 (3321 Castle, Spring, TX F 25000 (987654321 4
Jennifer S Wallace | 987654321 | 1941-06-20 (291 Berry, Bellaire, TX F 43000 |BBBE65555 4
Ramesh K Marayan | 666884444 [1962-09-15 | 975 Fire Oak, Humble, TX | M |38000 |333445555 5
Joyce A English | 453453453 | 1972-07-31 |5631 Rice, Houston, TX F 25000 |333445555 5
Ahmad A" Jabbar 287987987 | 1969-03-29 | 980 Dallas, Houston, TX M 25000 |9287654321 4
James E Borg 888665555 (1937-11-10 | 450 Stone, Houston, TX M |55000 |MULL 1
DEPARTMENT DEPT_LOCATIONS
Dname Dnumber Mgr_ssn Mgr_start_date Dnumber Dlocation
Research 5 333445555 1988-05-22 1 Houston
Administration 4 987654321 1995-01-01 4 Stafford
Headquarters 1 888665555 1981-06-19 5 Bellaire
5 Sugariand
5 Houston
WORKS_ON PROJECT
Essn Pno Hours Prname Pnumber Plocation Dnum
1234656789 1 3285 ProductX 1 Bellaire L5
123456789 2 7.5 ProductY 2 Sugarland =3
666884444 3 40.0 ProductZ 3 Houston 5
453453453 1 20.0 Computerization 10 Stafford <+
453453453 2 20.0 Reorganization 20 Houston 1
333445555 2 10.0 Mewbenefits 20 Stafford 4
333445555 3 10.0
333445555 10 10.0 DEPENDENT
SES4A5566 =9 e Essn Dependent_name Sex Bdate Relationship
999887777 20 30.0 333445555 Alice F 1986-04-06 | Daughter
999887777 10 10.0 333445555 Theodore M 1983-10-256 | Son
987987987 10 35.0 333445555 Joy F 19658-06-038 | Spouse
987987987 30 5.0 987654321 Abner M 1942-02-28 | Spouse
287654321 30 20.0 123456789 Michael M 1988-01-04 | Son
987654321 20 15.0 123456789 Alice F 1988-12-30 Daughter
B88B8665555 20 MNULL 123456789 Elizabeth F 1967-05-05 Spouse

Query 1. Retrieve the name and address of all employees who work for the ‘Research’ department.
RESEARCH_DEPT € G pname = 'Research'(DEPARTMENT)

RESEARCH_EMPS & (RESEARCH_DEPT DX pnumber = bno EMPLOYEE)

RESULT¢ 1t Fname, Lname,Address(RESEARCH_EMPS)

Query 2. For every project located in ‘Stafford’, list the project number, the controlling department number,
and the department manager’s last name, address, and birth date.

STAFFORD_PROIJs € ¢ plocation = 'stafford'(PROJECT)

CONTR_DEPTS4(STAFFORD_PROJsP< pnum=pnumber DEPARTMENT)

PROJ_DEPT_MGRS & (CONTR_DEPTS DX mgr_ssn =ssn EMPLOYEE)

RESULT é t Pnumber,Dnum,Lname,Address,Bdate(PROJ_DEPT_IVIG RS)

Query 3. Find the names of employees who work on all the projects controlled by department number 5.

DEPT5_PROJS € p(Pno)(mPnumber(cDnum=5(PROJECT)))
EMP_PROJ €& p(Ssn, Pno)(mtEssn, Pno(WORKS_ON))
RESULT_EMP_SSNS <& EMP_PROJ + DEPT5_PROJS

RESULT & mLname, Fname(RESULT_EMP_SSNS * EMPLOYEE)

Page no: 8

Query 4. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational algebra. We have to use the
AGGREGATE FUNCTION operation with the COUNT aggregate function. We assume that dependents of the
same employee have distinct Dependent_name values.

T1(Ssn, No_of_Dependents)< tssn > COUNT pependent name(DEPENDENT)

T240 No_of Dependent 22(T1)
RESULT é i Lname, Fname(Tz* EMPLOYEE)

ID Name Dept_name | Salary
10101 | Shrinivasan | Comp.sci 65000
12121 | Wu Finance 90000
15151 | Mozart Music 40000
22222 | Einstin Physics 95000

Instructor Relation

instructor relation where the instructor is in the “Physics”
department, we write:

dept name =“Physics” (instructor)

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it tells
what to do but never explains how to do it.

Relational calculus exists in two forms -

Tuple Relational Calculus (TRC) Filtering variable ranges over tuples
Notation - {T | Condition}

Returns all tuples T that satisfies a condition.

For example -

{T.name | Author(T) AND T.article = 'database' }
Output - Returns tuples with 'name' from Author who has written article on 'database’.

TRC can be quantified. We can use Existential (3) and Universal Quantifiers (V).
For example -

{R] 3T € Authors(T.article='database' AND R.name=T.name)}
Output — The above query will yield the same result as the previous one.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values (as done in TRC,
mentioned above).

Notation -

{al,a2,a3,...,an| P(al, a2, a3, ... ,an)}

Page no: 9

Where al, a2 are attributes and P stands for formulae built by inner attributes.
For example -

{< article, page, subject > | € TP A subject = 'database'}
Output - Yields Article, Page, and Subject from the relation TP where subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also involves
relational operators.

The expression power of Tuple Relation Calculus and Domain Relational Calculus is equivalent to Relational
Algebra.

E-R Diagram

An ER schema diagram for the COMPANY database

Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is an entity, which is a thing in
the real world with an independent existence. An entity may be an object with a physical existence (for
example, a particular person, car, house, or employee) or it may be an object with a conceptual existence
(for instance, a company, a job, or a university course).

Composite versus Simple (Atomic) Attributes. Composite attributes can be divided into smaller subparts,
which represent more basic attributes with independent meanings. For example, the Address attribute of
the EMPLOYEE entity.

<Fna.me%’h'llnl Lname_)
<Bdate ddress> Salar}r>
Cgen) Se> N 1 Cosatons>
WORKS_FOR I
Clame > | CHumber>
GH date Number__o_f_;a-mplcyees—| DEPARTMENT |
ﬁ i
\ Hl::-urs *N
N
_ PROJECT |
Supervisor Supervisee
1 N
ion
DEPENDENTS_OF -
N
| DEPENDENT |
S /_,__L___H ~
Name) (_ Sex) (_Birth_date @_&Iationsh_ié)
Page no: 10

Single-Valued versus Multivalued Attributes. Most attributes have a single value for a particular entity;
such attributes are called single-valued. For example, Age.

A multivalued attribute may have lower and upper bounds to constrain the number of values allowed for
each individual entity. For example, the Colors attribute of a car.

Stored versus Derived Attributes. In some cases, two (or more) attribute values are related—for example,
the Age and Birth_date attributes of a person.

Initial Conceptual Design of the COMPANY Database covers

Relationship & type

Cardinality

Week Entity

Participation Constraints: - The participation constraint specifies whether the existence of an entity
depends on its being related to another entity via the relationship type.

Company schema, with structural constraints specified using (min, max) notation and role names.

Enhanced Entity-Relationship (EER) Model

Semantic data modeling concepts that were incorporated into conceptual data models such as the ER
Model. ER model can be enhanced to include these concepts, leading to the Enhanced ER (EER) model.
Subclasses: - An entity type is used to represent both a type of entity and the entity set or collection of
entities of that type that exist in the database. For example, the entity type EMPLOYEE describes the type
(that is, the attributes and relationships) of each employee entity, and also refers to the current set of
EMPLOYEE entities in the COMPANY database.

Super classes: - We call each of these subgroupings a subclass or subtype of the EMPLOYEE entity type,
and the EMPLOYEE entity type is called the superclass or super type for each of these subclasses.

Coname C Minit > Lname >

CName > (Address

(;é_tart_de;{é\' Number of emplc}yees,a

{ DEPARTMENT |

Department

(0,N)

Controlling

!
!
!

DEPENDENTS_OF

Managed ,/’111 1) Department
__ CONTROLS
) ' Hours /

(O.N) ."'I Wc-rker Controlled
o.M (1,1) | Project
Supervisor | Supervisee
/ PRCOIJECT

Page no: 11

Extended E-R Model

Specialization
Specialization is the process of defining a set of subclasses of an entity type this entity type is called the
superclass of the specialization. The set of subclasses that forms a specialization is defined on the basis of
some distinguishing characteristic of the entities in the superclass. For example, the set of subclasses
{SECRETARY, ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that distinguishes
among employee entities based on the job type of each employee entity.
Steps for Specialization

e Define a set of subclasses of an entity type.

e Establish additional specific attributes with each subclass.

e Establish additional specific relationship types between each subclass and other entity types or other

subclasses.

EER diagram notation to represent subclasses and specialization. Three specializations of EMPLOYEE:
{SECRETARY, TECHNICIAN, ENGINEER}
{MANAGER}
{HOURLY_EMPLOYEE, SALARIED _EMPLOYEE}

R e e

CFname > C_ Minit > ¢ 3

o S-___r:_/,::_ = e der T T R A
Name > C_ Ssn_> < Birth_date ><_Address >

L/ S dﬁ\l
'QIEE'”Q_SPE?E:\J / <_Eng_type > \\ < Pay_scale™
B /- lgrade =ng_type e

| [—7 , —
SECRETARY || TECHNICIAN || ENGINEER || MANAGER | (Salary > | HOURLY_EMPLOYEE

| SALARIED_EMPLOYEE |

MANAGES, BELONGS_TO

PROJECT TRADE_UNION

Generalization

Generalization

We can think of a reverse process of abstraction in which we suppress the differences among several entity
types, identify their common features, and generalize them into a single superclass of which the original
entity types are special subclasses. For example, consider the entity types CAR and TRUCK.

Generalization. (a) Two entity types, CAR and TRUCK. (b)Generalizing CAR and TRUCK into the superclass
VEHICLE.

Page no: 12

Tonn@

@ N —
__ Moof passengers oot ares>
“’f‘?hlcle E“*

Vehicle_id CAR
ehicle_i —
C T — —— (eticle id)
License_plate_no License Ia@

CLicense piate no> CGcense pite

(b] (,.--'—‘_'___ _‘T“‘-\-.“ ll_..-""'_T - - ___"‘--._\\'
&E'G_ha—'d \Erma Llcense_plate__rf_/

— — d o
@ of as&e@g - o_of_axles
¢ Max spee 2 B o - I
\‘Jﬂij{ipf? d Ton_niq_:ff,
CAR

Specialization
Inheritance
We use all the above features of ER-Model in order to create classes of objects in object-oriented
programming. The details of entities are generally hidden from the user; this process known as abstraction.
Inheritance is an important feature of Generalization and Specialization. It allows lower-level entities to
inherit the attributes of higher-level entities.

Inheritance

For example, the attributes of a Person class such as name, age, and gender can be inherited by lower-
level entities such as Student or Teacher.

Aggregation
Aggregation is a process when the relation between two entities is treated as a single entity. Here the
relation between Center and Course is acting as an Entity in relation with Visitor.

Visitor

Aggregation

Page no: 13

