
UNIT-II

Relational algebra is a procedural query language, which takes instances of relations as input and yields

instances of relations as output. It uses operators to perform queries. An operator can be either unary or

binary. They accept relations as their input and yield relations as their output. Relational algebra is

performed recursively on a relation and intermediate results are also considered relations.

In the formal relational model terminology, a row is called a tuple, a column header is called an attribute,

and the table is called a relation. The data type describing the types of values that can appear in each

column is represented by a domain of possible values. We now define these terms—domain, tuple,

attribute, and relation formally.

Domains, Attributes, Tuples, and Relations

Deposit Relation Customer Relation

bname Account Ename Balance

Bhanwarkuwan SBI1200 Ram 5000

Tilak Nagar SBI1238 Amit 1000

 It has four attributes.

 For each attribute there is a permitted set of values, called the domain of that attribute.

 E.g. the domain of bname is the set of all branch names.

Let denote the domain of bname, and , and the remaining attributes' domains respectively.

A domain D is a set of atomic values. By atomic we mean that each value in the domain is indivisible as far

as the formal relational model is concerned. A common method of specifying a domain is to specify a data

type from which the data values forming the domain are drawn. It is also useful to specify a name for the

domain, to help in interpreting its values. Some examples of domains follow:

● Usa_phone_numbers. The set of ten-digit phone numbers valid in the United States.

● Local_phone_numbers. The set of seven-digit phone numbers valid within a particular area code in

the United States. The use of local phone numbers is quickly becoming obsolete, being replaced by

standard ten-digit numbers.

 A relation schema R, denoted by R(A 1 , A 2 , ..., A n),

is made up of a relation name R and a list of attributes, A 1 , A 2 , ..., A n . Each attribute A i is the name of

a role played by some domain D in the relation schema R. D is called the domain of A i and is denoted by

dom (A i). A relation schema is used to describe a relation R is called the name of this relation. The degree

(or arity) of a relation is the number of attributes n of its relation schema.

Using the datatype of each attribute, the definition is sometimes written as:

STUDENT (Name: string, Ssn: string, Homophone: string, Address: string, Office phone: string, Age: integer,

Gpa: real)

Characteristics of Relations

Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Mathematically, elements of a set

have no order among them hence, tuples in a relation do not have any particular order.

Ordering of Values within a Tuple and an Alternative Definition of a Relation. According to the preceding

definition of a relation, an n-tuple is an ordered list of n values, so the ordering of values in a tuple and hence

of attributes in a relation schema is important.

Values and NULLs in the Tuples. Each value in a tuple is an atomic value that is, it is not divisible into

Ename Street City

Ramesh MG road Indore

Jhon RNT Marg Indore

Page no: 1

http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

components within the framework of the basic relational model. Hence, composite and multivalued

attributes are not allowed. An important concept is that of NULL values, which are used to represent the

values of attributes that may be unknown or may not apply to a tuple.

Relational Model Notation

A relation schema R of degree n is denoted by R (A 1 , A 2 , ..., A n).

● The uppercase letters Q, R, S denote relation names.

● The lowercase letters q, r, s denotes relation states.

● The letters t, u, v denotes tuples.

● In general, the name of a relation schema such as STUDENT also indicates the current set of tuples

in that relation—the current relation state—whereas STUDENT (Name, Ssn , ...) refers only to the

relation schema.

● An attribute A can be qualified with the relation name R to which it belongs by using the dot notation

R.A—for example, STUDENT. Name or STUDENT. Age. This is because the same name may be used

for two attributes in different relations.

Relational Model Constraints and Relational Database Schemas

Constraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model. We call these inherent model-based constraints or

implicit constraints. Example: In the relational model, no two tuples in a relation can be duplicates. Why?

Because a relation is a set of tuples, as opposed to a bag/multiset or a sequence.

2. Constraints that can be directly expressed in schemas of the data model, typically by specifying them in

the DDL. We call these schema-based constraints or explicit constraints.

3.Constraints that cannot be directly expressed in the schemas of the data model, and hence must be

expressed and enforced by the application programs. We call these application-based or semantic

constraints or business rules.

Types of Schema based Constraints

Domain Constraints

Domain constraints specify that within each tuple, the value of each attribute A must be an atomic value

from the domain dom(A).

Key Constraints and Constraints on NULL Values

In the formal relational model, a relation is defined as a set of tuples. By definition, all elements of a set are

distinct; hence, all tuples in a relation must also be distinct.

A super key SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the

same value for SK. Every relation has at least one default super key—the set of all its attributes. A super key

can have redundant attributes, however, so a more useful concept is that of a key, which has no redundancy.

A relation schema may have more than one key. In this case, each of the keys is called a candidate key. For

example, the CAR relation has (Licence_no Eng_sr_no Model Make_year model) two candidate keys:

License_number and Engine_serial_number . It is common to designate one of the candidate keys as the

primary key of the relation. This is the candidate key whose values are used to identify tuples in the relation.

Relational Databases and Relational Database Schemas

The definitions and constraints we have discussed so far apply to single relations and their attributes. A

relational database usually contains many relations, with tuples in relations that are related in various ways.

Page no: 2

In this section, we define a relational database and a relational database schema.

A relational database schema S is a set of relation schemas S = {R 1, R 2, ..., R m} and a set of integrity

constraints IC. A relational database state 10 DB of S is a set of relation states DB = {r 1, r 2, ..., r m} such that

each r i is a state of R i and such that the r i relation states satisfy the integrity constraints specified in IC.

Below Figure shows a relational database schema that we call COMPANY = {EMPLOYEE, DEPARTMENT,

DEPT_LOCATIONS, PROJECT, WORKS_ON , DEPENDENT }. The underlined attributes represent primary keys.

Integrity, Referential Integrity, and Foreign Keys

The entity integrity constraint states that no primary key value can be NULL. This is because the primary key

value is used to identify individual tuples in a relation. Having NULL values for the primary key implies that

we cannot identify some tuples. For example, if two or more tuples had NULL for their primary keys, we may

not be able to distinguish them if we try to reference them from other relations.

The referential integrity constraint is specified between two relations and is used to maintain the

consistency among tuples in the two relations. Informally, the referential integrity constraint states that a

tuple in one relation that refers to another relation must refer to an existing tuple in that relation.

EMPLOYEEE

Fname Minit Lname Ssn Bdata Address Sex Salary Super_ssn Dno

DEPARTMENT

DNAME Dnumber Mgr_ssn Mgr_str_Date

DEPT_ LOCATIONS

Dnumber DLocation

PROJECT

Pname Pnumber Plocation Dnum

Page no: 3

The relational algebra is very important for several reasons. First, it provides a formal foundation for

relational model operations. Second, and perhaps more important, it is used as a basis for implementing

and optimizing queries in the query processing and optimization modules that are integral parts of relational

database management systems (RDBMSs).

Difference Between Calculus & algebra

the algebra defines a set of operations for the relational model, the relational calculus provides a higher-

level declarative language for specifying relational queries. A relational calculus expression creates a new

relation. In a relational calculus expression, there is no order of operations to specify how to retrieve the

query result only what information the result should contain.

The fuŶdaŵeŶtal opeƌatioŶs of ƌelatioŶal algeďƌa aƌe as folloǁs −

● Select

● Project

● Union

● Set different

● Cartesian product

● Rename

We will discuss all these operations in the following sections.

Select OperatioŶ ;σͿ
It selects tuples that satisfy the given predicate from a relation.

NotatioŶ − σ(r)

Wheƌe σ staŶds foƌ seleĐtioŶ pƌediĐate aŶd ƌ staŶds foƌ ƌelatioŶ. p is pƌopositioŶal logiĐ foƌŵula ǁhiĐh ŵaǇ
use ĐoŶŶeĐtoƌs like aŶd, oƌ, aŶd Ŷot. These teƌŵs ŵaǇ use ƌelatioŶal opeƌatoƌs like − =, ≠, ш, < , >, ч.

Foƌ eǆaŵple −

σsuďjeĐt = "dataďase";BooksͿ
Output − SeleĐts tuples fƌoŵ ďooks ǁheƌe suďjeĐt is 'dataďase'.
σsuďjeĐt = "dataďase" aŶd pƌiĐe = "ϰϱϬ";BooksͿ
Output − SeleĐts tuples fƌoŵ ďooks ǁheƌe suďjeĐt is 'dataďase' aŶd 'pƌiĐe' is 450.

σsuďjeĐt = "dataďase" aŶd pƌiĐe = "ϰϱϬ" oƌ Ǉeaƌ > "ϮϬϭϬ";BooksͿ
Output − SeleĐts tuples fƌoŵ ďooks ǁheƌe suďjeĐt is 'dataďase' aŶd 'pƌiĐe' is ϰϱϬ oƌ those ďooks puďlished
after 2010.

Project OperatioŶ ;∏Ϳ
It projects column(s) that satisfy a given predicate.

NotatioŶ − ∏Aϭ, AϮ, AŶ ;ƌͿ

Where A1, A2 , An are attribute names of relation r.

Duplicate rows are automatically eliminated, as relation is a set.

Foƌ eǆaŵple −

∏suďjeĐt, authoƌ ;BooksͿ
Selects and projects columns named as subject and author from the relation Books.

Union Operation (∪)

It peƌfoƌŵs ďiŶaƌǇ uŶioŶ ďetǁeeŶ tǁo giǀeŶ ƌelatioŶs aŶd is defiŶed as −

Page no: 4

r ∪ s = { t | t ∈ r or t ∈ s}

NotatioŶ − ƌ U s

Where r and s are either database relations or relation result set (temporary relation).

Foƌ a uŶioŶ opeƌatioŶ to ďe ǀalid, the folloǁiŶg ĐoŶditioŶs ŵust hold −

r, and s must have the same number of attributes.

Attribute domains must be compatible.

Duplicate tuples are automatically eliminated.

∏ authoƌ ;BooksͿ ∪ ∏ authoƌ ;AƌtiĐlesͿ
Output − Projects the names of the authors who have either written a book or an article or both.

Set DiffereŶce ;−Ϳ
The result of set difference operation is tuples, which are present in one relation but are not in the second

relation.

NotatioŶ − ƌ − s

Finds all the tuples that are present in r but not in s.

∏ authoƌ ;BooksͿ − ∏ authoƌ ;AƌtiĐlesͿ
Output − Pƌoǀides the Ŷaŵe of authoƌs ǁho haǀe ǁƌitteŶ ďooks ďut Ŷot aƌtiĐles.

CartesiaŶ Product ;ΧͿ
Combines information of two different relations into one.

Notation − ƌ Χ s

Wheƌe ƌ aŶd s aƌe ƌelatioŶs aŶd theiƌ output ǁill ďe defiŶed as −

ƌ Χ s = { Ƌ t | Ƌ ∈ r and t ∈ s}

σauthoƌ = 'tt';Books Χ AƌtiĐlesͿ
Output − Yields a ƌelatioŶ, ǁhiĐh shoǁs all the ďooks aŶd aƌtiĐles ǁƌitteŶ ďǇ tt.

ReŶaŵe OperatioŶ ;ʌͿ
The results of relational algebra are also relations but without any name. The rename operation allows us

to ƌeŶaŵe the output ƌelatioŶ. 'ƌeŶaŵe' opeƌatioŶ is deŶoted ǁith sŵall Gƌeek letteƌ ƌho ʌ.

NotatioŶ − ʌ ǆ ;EͿ

Where the result of expression E is saved with name of x.

AdditioŶal opeƌatioŶs aƌe −

● Set intersection

● Assignment

● Natural join

We can define the three operations UNION, INTERSECTION, and SET DIFFERENCE

on two union-compatible relations R and S as follows:

■ UNION: The result of this operation, denoted by R ∪ S, is a relation that includes all tuples that are either

in R or in S or in both R and S. Duplicate tuples are eliminated.

■ INTERSECTION: The ƌesult of this opeƌatioŶ, deŶoted ďǇ R ∩ S, is a ƌelatioŶ that includes all tuples that are

in both R and S.

■ SET DIFFERENCE (or MINUS): The result of this operation, denoted by R – S, is a relation that includes all

tuples that are in R but not in S.

The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.

Page no: 5

(b) STUDENT ∪ INSTRUCTOR. ;ĐͿ STUDENT ∩ INSTRUCTOR. ;dͿ STUDENT − INSTRUCTOR.
;eͿ INSTRUCTOR − STUDENT.

CARTESIAN PRODUCT operation—also known as CROSS PRODUCT or CROSS JOIN—which is denoted by ×.

This is also a binary set operation, but the relations on which it is applied do not have to be union compatible.

The JOIN operation, denoted by, is used to ĐoŵďiŶe ƌelated tuples fƌoŵ tǁo ƌelatioŶs iŶto siŶgle ͞loŶgeƌ͟
tuples. This operation is very important for any relational database with more than a single relation because

it allows us to process relationships among relations.

DEPT_MGR← DEPARTMENT ⨝ Mgr_ssn=Snn EMPLOYEE

RESULT ← ∏Dame,Lname (DEPT_MGR)

Variations of JOIN: The EQUIJOIN and NATURAL JOIN

The most common use of JOIN involves join conditions with equality comparisons only. Such a JOIN, where

the only comparison operator used is =, is called an EQUIJOIN.

The standard definition of NATURAL JOIN requires that the two join attributes (or each pair of join attributes)

have the same name in both relations. If this is not the case, a renaming operation is applied first.

PROJ_DEP DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS.

The DIVISION Operation

The DIVISION operation, denoted by ÷, is useful for a special kind of query that sometimes occurs in database

appliĐatioŶs. AŶ eǆaŵple is Retƌieǀe the Ŷaŵes of eŵploǇees ǁho ǁoƌk oŶ all the pƌojeĐts that ͚JohŶ Sŵith͛
works on.

SMITH← σ Fname ='Jhon' AND Lname = 'SMITH' (EMPLOYEE)

SMITH_PNOS ← ʋ pno (WORKS_ON ⨝ Essn = Ssn SMITH)

Page no: 6

 OPERATI

 PURPOSE

 NOTATION

SELECT

Selects all tuples that satisfy the selection condition from a

relation R.

σ<seleĐtioŶ
condition>(R)

PROJECT

Produces a new relation with only some of the attributes

of R, and removes duplicate tuples.

ʋ<attƌiďute list>;RͿ

THETA JOIN

Produces all combinations of tuples from R and R1 2 that

 satisfy the join condition.

R1 <join condition>

R2

EQUIJOIN

Produces all the combinations of tuples from R1 and R2

that satisfy a join condition with only equality

comparisons.

R1 <join condition>

R2, OR (<join

NATURAL JOIN

Same as EQUIJOIN except that the join attributes of R2 are

not included in the resulting relation; if the join attributes

have the same names, they do not have to be specified at

all.

R1*<join condition>

R2, OR R1* (<join

attributes 1>),

 (<join

UNION

Produces a relation that includes all the tuples in R1 or R2

or both R1 and R2; R1 and R2 must be union-compatible.

R1 ∪ R2

INTERSECTION

Produces a relation that includes all the tuples in both R1

and R2; R1 and R2 must be union-compatible.

Rϭ ∩ RϮ

DIFFERENCE

Produces a relation that includes all the tuples in R1 that

are not in R2; R1 and R2 must be union-compatible.

R1 – R2

CARTESIAN

PRODUCT

Produces a relation that has the attributes of R1 and R2

and includes as tuples all possible combinations of tuples

from R1 and R2.

R1 × R2

DIVISION

Produces a relation R(X) that includes all tuples t[X] in

R1(Z) that appear in R1 in combination with every tuple

from R(Y), where Z = X ∪ Y.

R1(Z) ÷ R2(Y)

Example on Relational Algebra

Page no: 7

Query 1. Retrieve the name and address of all eŵploǇees ǁho ǁoƌk foƌ the ͚ReseaƌĐh͛ depaƌtŵeŶt.
RESEARCH_DEPT ← σ Dname = 'Research'(DEPARTMENT)

RESEARCH_EMPS ← ;RESEARCH_DEPT ⨝ Dnumber = Dno EMPLOYEE)

RESULT← ʋ Fname , Lname ,Address(RESEARCH_EMPS)

QueƌǇ Ϯ. Foƌ eǀeƌǇ pƌojeĐt loĐated iŶ ͚Staffoƌd͛, list the pƌojeĐt Ŷuŵďeƌ, the ĐoŶtƌolliŶg depaƌtŵeŶt Ŷuŵďeƌ,
aŶd the depaƌtŵeŶt ŵaŶageƌ͛s last name, address, and birth date.

STAFFORD_PROJs ← σ PloĐatioŶ = 'staffoƌd'(PROJECT)

CONTR_DEPTS←;STAFFORD_PROJs⨝ Dnum=Dnumber DEPARTMENT)

PROJ_DEPT_MGRS ← ;CONTR_DEPTS ⨝ Mgr_ssn = Ssn EMPLOYEE)

RESULT ← ʋ Pnumber,Dnum,Lname,Address,Bdate(PROJ_DEPT_MGRS)

Query 3. Find the names of employees who work on all the projects controlled by department number 5.

DEPTϱ_PROJS ← ʌ;PnoͿ;ʋPŶuŵďeƌ;σDŶuŵ=ϱ;PROJECT)))

EMP_PROJ ← ʌ;SsŶ, PnoͿ;ʋEssŶ, Pno(WORKS_ON))

RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPTϱ_PROJS

RESULT ← ʋLŶaŵe, Fname(RESULT_EMP_SSNS * EMPLOYEE)

Page no: 8

Query 4. List the names of all employees with two or more dependents.

Strictly speaking, this query cannot be done in the basic (original) relational algebra. We have to use the

AGGREGATE FUNCTION operation with the COUNT aggregate function. We assume that dependents of the

same employee have distinct Dependent_name values.

Tϭ;SsŶ, No_of_DepeŶdeŶtsͿ← Essn
ƺ

 COUNT Dependent_name(DEPENDENT)

TϮ ← σ No_of DepeŶdeŶt шϮ(T1)

RESULT ← ʋ LŶaŵe, FŶaŵe(T2* EMPLOYEE)

ID Name Dept_name Salary

10101 Shrinivasan Comp.sci 65000

12121 Wu Finance 90000

15151 Mozart Music 40000

22222 Einstin Physics 95000

Instructor Relation

iŶstructor relatioŶ where the iŶstructor is iŶ the ͞Physics͟

department, we write:

dept Ŷaŵe =͞Physics͟ ;iŶstructor Ϳ

Relational Calculus

In contrast to Relational Algebra, Relational Calculus is a non-procedural query language, that is, it tells

what to do but never explains how to do it.

RelatioŶal ĐalĐulus eǆists iŶ tǁo foƌŵs −

Tuple Relational Calculus (TRC) Filtering variable ranges over tuples

NotatioŶ − {T | CoŶditioŶ}

Returns all tuples T that satisfies a condition.

Foƌ eǆaŵple −

{ T.name | Author(T) AND T.article = 'database' }

Output − RetuƌŶs tuples ǁith 'Ŷaŵe' fƌoŵ Authoƌ ǁho has ǁƌitteŶ aƌtiĐle oŶ 'dataďase'.

TRC can be quantified. We can use Existential (∃) and Universal Quantifiers (∀).

Foƌ eǆaŵple −

{ R| ∃T ∈ Authors(T.article='database' AND R.name=T.name)}

Output − The aďoǀe ƋueƌǇ ǁill Ǉield the saŵe ƌesult as the pƌeǀious oŶe.

Domain Relational Calculus (DRC)

In DRC, the filtering variable uses the domain of attributes instead of entire tuple values (as done in TRC,

mentioned above).

NotatioŶ −

{ a1, a2, a3, ..., an | P (a1, a2, a3, ... ,an)}

Page no: 9

Where a1, a2 are attributes and P stands for formulae built by inner attributes.

Foƌ eǆaŵple −

{< article, page, subject > | ∈ TP ∧ subject = 'database'}

Output − Yields Article, Page, and Subject from the relation TP where subject is database.

Just like TRC, DRC can also be written using existential and universal quantifiers. DRC also involves

relational operators.

The expression power of Tuple Relation Calculus and Domain Relational Calculus is equivalent to Relational

Algebra.

E-R Diagram

An ER schema diagram for the COMPANY database

Entities and Attributes

Entities and Their Attributes. The basic object that the ER model represents is an entity, which is a thing in

the real world with an independent existence. An entity may be an object with a physical existence (for

example, a particular person, car, house, or employee) or it may be an object with a conceptual existence

(for instance, a company, a job, or a university course).

Composite versus Simple (Atomic) Attributes. Composite attributes can be divided into smaller subparts,

which represent more basic attributes with independent meanings. For example, the Address attribute of

the EMPLOYEE entity.

Page no: 10

Single-Valued versus Multivalued Attributes. Most attributes have a single value for a particular entity;

such attributes are called single-valued. For example, Age.

A multivalued attribute may have lower and upper bounds to constrain the number of values allowed for

each individual entity. For example, the Colors attribute of a car.

Stored versus Derived Attributes. In some cases, two (or more) attribute values are related—for example,

the Age and Birth_date attributes of a person.

Initial Conceptual Design of the COMPANY Database covers

Relationship & type

Cardinality

Week Entity

Participation Constraints: - The participation constraint specifies whether the existence of an entity

depends on its being related to another entity via the relationship type.

Company schema, with structural constraints specified using (min, max) notation and role names.

Enhanced Entity-Relationship (EER) Model

Semantic data modeling concepts that were incorporated into conceptual data models such as the ER

Model. ER model can be enhanced to include these concepts, leading to the Enhanced ER (EER) model.

Subclasses: - An entity type is used to represent both a type of entity and the entity set or collection of

entities of that type that exist in the database. For example, the entity type EMPLOYEE describes the type

(that is, the attributes and relationships) of each employee entity, and also refers to the current set of

EMPLOYEE entities in the COMPANY database.

Super classes: - We call each of these subgroupings a subclass or subtype of the EMPLOYEE entity type,

and the EMPLOYEE entity type is called the superclass or super type for each of these subclasses.

Page no: 11

Extended E-R Model

Specialization

Specialization is the process of defining a set of subclasses of an entity type this entity type is called the

superclass of the specialization. The set of subclasses that forms a specialization is defined on the basis of

some distinguishing characteristic of the entities in the superclass. For example, the set of subclasses

{SECRETARY, ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that distinguishes

among employee entities based on the job type of each employee entity.

Steps for Specialization

 Define a set of subclasses of an entity type.

 Establish additional specific attributes with each subclass.

 Establish additional specific relationship types between each subclass and other entity types or other

subclasses.

EER diagram notation to represent subclasses and specialization. Three specializations of EMPLOYEE:

{SECRETARY, TECHNICIAN, ENGINEER}

{MANAGER}

{HOURLY_EMPLOYEE, SALARIED_EMPLOYEE}

Generalization

 Generalization

We can think of a reverse process of abstraction in which we suppress the differences among several entity

types, identify their common features, and generalize them into a single superclass of which the original

entity types are special subclasses. For example, consider the entity types CAR and TRUCK.

Generalization. (a) Two entity types, CAR and TRUCK. (b)Generalizing CAR and TRUCK into the superclass

VEHICLE.

Page no: 12

Specialization

Inheritance

We use all the above features of ER-Model in order to create classes of objects in object-oriented

programming. The details of entities are generally hidden from the user; this process known as abstraction.

Inheritance is an important feature of Generalization and Specialization. It allows lower-level entities to

inherit the attributes of higher-level entities.

Inheritance

For example, the attributes of a Person class such as name, age, and gender can be inherited by lower-

level entities such as Student or Teacher.

Aggregation

Aggregation is a process when the relation between two entities is treated as a single entity. Here the

relation between Center and Course is acting as an Entity in relation with Visitor.

 Aggregation

Page no: 13

