
Unit IV

Normalization of Database

Database Normalizations is a technique of organizing the data in the database. Normalization is a systematic

approach of decomposing tables to eliminate data redundancy and undesirable characteristics like Insertion,

Update and Deletion Anomalies. It is a multi-step process that puts data into tabular form by removing

duplicated data from the relation tables.

Normalization is used for mainly two purpose,

Eliminating redundant(useless) data.

Ensuring data dependencies make sense i.e. data is logically stored.

Problem Without Normalization

Without Normalization, it becomes difficult to handle and update the database, without facing data loss.

Insertion, Updating and Deletion Anomalies are very frequent if Database is not Normalized. To

understand these anomalies let us take an example of Student table.

S_id S_Name S_Address Subject_opted

401 Adam Noida Bio

402 Alex Panipat Maths

403 Stuart Jammu Maths

404 Adam Noida Physics

 Updating Anomaly: To update address of a student who occurs twice or more than twice in a table, we

will have to update Address column in all the rows, else data will become inconsistent.

 Insertion Anomaly: Suppose for a new admission, we have a Student id(S_id), name and address of a

student but if student has not opted for any subjects yet then we have to insert NULL there, leading to

Insertion Anomaly.

 Deletion Anomaly: If (S_id) 401 has only one subject and temporarily he drops it, when we delete that

row, entire student record will be deleted along with it.

Theory of Data Normalization in Sql is still being developed further. For example, there are discussions

even on 6th Normal Form. But in most practical applications normalization achieves its best in 3rd

Normal Form. The evolution of Normalization theories is illustrated below-

Functional Dependencies

A functional dependency is a relationship between two attributes. Typically, between the PK and other non-

key attributes with in the table. For any relation R, attribute Y is functionally dependent on attribute X

(usually the PK), if for every valid instance of X, that value of X uniquely determines the value of Y.

Page no: 1

http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo
http://www.a-pdf.com/?tr-demo

X ———–> Y

The left-hand side of the FD is called the determinant, and the right-hand side is the dependent.

Examples:

SIN ———-> Name, Address, Birthdate

SIN determines names and address and birthdays. Given SIN, we can determine any of the other attributes

within the table.

Sin, Course ———> Date-Completed

Sin and Course determine date completed. This must also work for a composite PK.

ISBN ———–> Title

ISBN determines title.

Various Types of Functional Dependencies are –

· Single Valued Functional Dependency

· Fully Functional Dependency

· Partial Functional Dependency

· Transitive Functional Dependency

· Trivial Functional Dependency

· Non-Trivial Functional Dependency

o Complete Non-Trivial Functional Dependency

o Semi Non-Trivial Functional Dependency

Single Valued Functional Dependency –

Database is a collection of related information in which one information depends on another information.

The information is either single-valued or multi-valued. For example, the name of the person or his / her

date of birth are single valued facts. But the qualification of a person is a multivalued fact.

A simple example of single value functional dependency is when A is the primary key of an entity (eg. SID)

and B is some single valued attribute of the entity (eg. SnameͿ. TheŶ, A → B ŵust alǁaǇs hold.

CID SID Sname

C1 S1 A

C1 S2 A

C2 S1 A

C3 S1 A

SID → Sname Sname → SID X

S1 A A S1

S1 A A S2

S1 A

For every SID, there should be uŶiƋue Ŷaŵe ;X → YͿ
Definition: Let R be the relational schema and X, Y be the set of attributes over R. t1, t2 be the any tuples of

R. X → Y eǆists iŶ ƌelatioŶ R oŶlǇ if tϭ.X = tϮ.X theŶ tϭ.Y = tϮ.Y

If condition fails – then dependency is not there.

Fully Functional Dependency

In a relation R, an attribute Q is said to be fully functional dependent on attribute P, if it is functionally

depeŶdeŶt oŶ P aŶd Ŷot fuŶĐtioŶallǇ depeŶdeŶt oŶ aŶǇ pƌopeƌ suďset of P. The depeŶdeŶĐǇ P → Q is left
reduced, there being no extraneous attributes in the left-hand side of the dependency.

Page no: 2

If AD → C, is fully functional dependency, then we cannot remove A or D. I.e. C is fully functional dependent

on AD. If we are able to remove A or D, then it is not fully functional dependency.

Another Example, Consider the following Company Relational Schema,

EMPOYEE

ENAME SSN(P.K) BDATE ADDRESS DNUMBER

DEPARTMENT

DNAME DNUMBER (P.K) DMGRSSN(F.K)

DEPT_LOCATIONS

DNUMBER (P.k) DLOCATION (P.K)

PROJECT

PNAME PNUMBER PLOCATION DNUM

WORKS_ON

SSN(P.K) PNUMBER(P.K) HOURS

{SSN, PNUMBER} → HOURS aƌe a full FD siŶĐe Ŷeitheƌ SSN → HOURS
 nor PNUMBER → HOURS hold

{SSN, PNUMBER} → ENAME is Ŷot a full FD ;it is Đalled a paƌtial depeŶdeŶĐǇͿ siŶĐe SSN → ENAME also holds.
Partial Functional Dependency –

A Functional Dependency in which one or more non-key attributes are functionally depending on a part of

the primary key is called partial functional dependency. or

where the determinant consists of key attributes, but not the entire primary key, and the determined consist

of non-key attributes.

For example, consider a Relation R (A, B, C, D, E) having

FD: AB → CDE ǁheƌe PK is AB.

TheŶ, {A → C; A → D; A → E; B → C; B → D; B → E} all aƌe Paƌtial DepeŶdeŶĐies.

Transitive Dependency –

Given a relation R (A, B, C) then dependency like A–>B, B–>C is a transitive dependency, since A–>C is

implied.

In the above Figure

SSN --> DMGRSSN is a transitive FD

 {since SSN --> DNUMBER and DNUMBER --> DMGRSSN hold}

SSN --> NAME is non-transitive FD since there is no set of attributes X

 where SSN --> X and X --> ENAME.

Trivial Functional Dependency –

Some functional dependencies are said to be trivial because they are satisfied by all relations. Functional

dependency of form A–>B is trivial if B subset= A. or

Page no: 3

A trivial Functional Dependency is the one where RHS is a subset of LHS.

Example, A-->A is satisfied by all relations involving attribute A.

SSN-->SSN

PNUMBER-->PNUMBER

SSN PNUMBER -->PNUMBER

SSN PNUMBER --> SSN PNUMBER

Non-Trivial Functional Dependency –

Non-Trivial Functional Dependency can be categorized into –

· Complete Non-Trivial Functional Dependency

· Semi Non-Trivial Functional Dependency

Complete Non-Trivial Functional Dependency –

 A Functional Dependency is completely non-trivial if none of the RHS attributes are part of the LHS

attributes.

Example, SSN --> Ename,

PNUMBER --> PNAME

PNUMBER--> BDATE X

Semi Non-Trivial Functional Dependencies – A Functional Dependency is semi non-trivial if at least one of

the RHS attributes are not part of the LHS attributes.

{TRIVIAL + NONTRIVIAL}

Question 1 :

A B C

1 1 1

1 2 1

2 1 2

2 2 3

Identify Non-Trivial Functional Dependency?

Solution:

S.NO Dependencies Non-Trivial FD?

1 A→B ×

2 A→C ×

3 A→BC ×

4 B→A ×

5 B→C ×

6 B→AC ×

7 C→A √

8 C→B ×

9 C→AB ×

10 AB→C √

11 BC→A √

12 AC→B ×

A→B is Ŷot a ŶoŶ-tƌiǀial FD ďeĐause, foƌ Ϯ, it has tǁo outputs. i.e Ϯ→Ϯ aŶd Ϯ→ϯ.
foƌ AB→C, ϭϭ→ϭ, ϭϮ→ϭ, Ϯϭ→Ϯ, ϮϮ→ϯ, so NoŶ-trivial.

Question 2: R (A B C D) AB {CaŶdidate KeǇ} A→C B→D. Wheƌe is the ƌeduŶdaŶĐǇ eǆistiŶg?

Solution: (A C) and (B D) is suffering from redundancy.

Question 3: Consider a relation with schema R (A, B, C, D) and FDs {AB -> C, C -> D, D -> A}. a. What are some

of the nontrivial FDs that can be inferred from the given FDs?

Page no: 4

Some examples:

C -> ACD

D -> AD

AB -> ABCD

AC -> ACD

BC -> ABCD

BD -> ABCD

CD -> ACD

ABC -> ABCD

ABD -> ABCD

BCD -> ABCD

Inference Rules ·for Functional Dependencies –

Let S be the set of functional dependencies that are specified on relation schema R. Numerous other

dependencies can be inferred or deduced from the functional dependencies in S.

Example:

Let S = {A → B, B → C}

A multivalued dependency occurs when the presence of one or more rows in a table implies the presence of

one or more other rows in that same table. Put another way, two attributes (or columns) in a table are

independent of one another, but both depend on a third attribute. A multivalued dependency prevents the

normalization standard Fourth Normal Form (4NF).

FUNCTIONAL DEPENDENCY VS. MULTIVALUED DEPENDENCY

To understand this, let's revisit what a functional dependency is.

Remember that if an attribute X uniquely determines an attribute Y, then Y is functionally dependent on X.

This is written as X -> Y. For example, in the Students table below, the Student_Name determines the Major:

Students

Student_Name Major

Ravi Art History

Beth Chemistry

This functional dependency can be written: Student_Name -> Major. Each Student_Name determines

exactly one Major, and no more.

Now, perhaps we also want to track the sports these students take. We might think the easiest way to do

this is to just add another column, Sport:

Students

Student_Name Major Sport

Ravi Art History Soccer

Ravi Art History Volleyball

Ravi Art History Tennis

Beth Chemistry Tennis

Beth Chemistry Soccer

Page no: 5

 The problem here is that both Ravi and Beth play multiple sports. We need to add a new row for every

additional sport.

This table has introduced a multivalued dependency because the major and the sport are independent of

one another but both depend on the student.

Note that this is a very simple example and easily identifiable — but this could become a problem in a large,

complex database.

A multivalued dependency is written X ->-> Y. In this case:

Student_Name ->-> Major

Student_Name ->-> Sport

This is read as "Student_Name multidetermined Major" and "Student Name multidetermined Sport."

A multivalued dependency always requires at least three attributes because it consists of at least two

attributes that are dependent on a third.

Multivalued dependency and normalization

A table with a multivalued dependency violates the normalization standard of Fourth Normal Form (4NK)

because it creates unnecessary redundancies and can contribute to inconsistent data. To bring this up to

4NF, we can break this into two tables.

The table below now has a functional dependency of Student_Name -> Major, and no multidependencies:

Students & Majors

Student_Name Major

Ravi Art History

Ravi Art History

Ravi Art History

Beth Chemistry

Beth Chemistry

While this table also has a single functional dependency of Student_Name -> Sport:

Students & Sports

Student_Name Sport

Ravi Soccer

Ravi Volleyball

Ravi Tennis

Beth Tennis

Beth Soccer

It's clear that normalization is often addressed by simplifying complex tables so that they contain information

related to a single idea or theme, rather than trying to make a single table contain too much disparate

information.

Numerical on Functional Dependency: -

Page no: 6

1. Let R= (A, B, C, D, E, F) be a relation scheme with the following dependencies: C->F, E->A, EC->D, A->B.

Which of the following is a key for R?

(a) CD (b) EC (c) AE (d) AC

Ans: option (b)

Explanation:

Find the closure set of all the options give. If any closure covers all the attributes of the relation R then that

is the key.

2. Consider a relation scheme R = (A, B, C, D, E, H) on which the following functional dependencies hold: {A–
>B, BC–>D, E–>C, D–>A}. What are the candidate keys of R?

(a) AE, BE

(b) AE, BE, DE

(c) AEH, BEH, BCH

(d) AEH, BEH, DEH

Ans: option (d)

Explanation:

As explained in question 1, if any closure includes all attributes of a table then it becomes the candidate key.

Closure of AEH = AEHB {A->B}

 = AEHBC {E->C}

 = AEHBCD {BC->D}

GATE-2005(IT)

5. In a schema with attributes A, B, C, D and E, following set of functional dependencies are given:

 A->B

 A->C

CD->E

 B->D

 E->A

Which of the following functional dependencies is NOT implied by the above set?

(a) CD->AC (b) BD->CD (c) BC->CD (d) AC->BC

Ans: option (b)

Explanation:

For every option given, find the closure set of left side of each FD. If the closure set of left side contains the

right side of the FD, then the particular FD is implied by the given set.

Option (a): Closure set of CD = CDEAB. Therefore CD->AC can be derived from the given set of FDs.

Option (c): Closure set of BC = BCDEA. Therefore BC->CD can be derived from the given set of FDs.

Option (d): Closure set of AC = ACBDE. Therefore AC->BC can be derived from the given set of FDs.

Option (b): Closure set of BD = BD. Therefore BD->CD cannot be derived from the given set of FDs.

Normalization

First Normal Form

First Normal Form is defined in the definition of relations (tables) itself. This rule defines that all the

attributes in a relation must have atomic domains. The values in an atomic domain are indivisible units.

Course Content

Programming Java,C++

Web HTML,PHP,ASP

Page no: 7

 We re-arrange the relation (table) as below, to convert it to First Normal Form.

Programming

Course Content

Programming JAVA

Programming C++

Web HTML

Web PHP

Web ASP

Second Normal Form

Before we learn about the second normal form, we Ŷeed to uŶdeƌstaŶd the folloǁiŶg −

Prime attribute − An attribute, which is a part of the prime-key, is known as a prime attribute.

Non-prime attribute − An attribute, which is not a part of the prime-key, is said to be a non-prime attribute.

If we follow second normal form, then every non-prime attribute should be fully functionally dependent on

pƌiŵe keǇ attƌiďute. That is, if X → A holds, theŶ theƌe should Ŷot ďe aŶǇ pƌopeƌ suďset Y of X, foƌ ǁhiĐh Y →
A also holds true.

We see here in Student_Project relation that the prime key attributes are Stu_ID and Proj_ID. According to

the rule, non-key attributes, i.e. Stu_Name and Proj_Name must be dependent upon both and not on any of

the prime key attribute individually. But we find that Stu_Name can be identified by Stu_ID and Proj_Name

can be identified by Proj_ID independently. This is called partial dependency, which is not allowed in Second

Normal Form.

Student

Stu_ID Stu_Name Proj_ID

Project

Proj_ID Proj_Name

We broke the relation in two as depicted in the above picture. So there exists no partial dependency.

Third Normal Form

For a relation to be in Third Normal Form, it must be in Second Normal form and the following must satisfy

−

No non-prime attribute is transitively dependent on prime key attribute.

For any non-tƌiǀial fuŶĐtioŶal depeŶdeŶĐǇ, X → A, theŶ eitheƌ −
X is a superkey or,

A is prime attribute.

Page no: 8

STUDENT_DETAILS

Stu_ID Stu_Name City Zip

We find that in the above Student_detail relation, Stu_ID is the key and only prime key attribute. We find

that City can be identified by Stu_ID as well as Zip itself. Neither Zip is a superkey nor is City a prime attribute.

AdditioŶallǇ, Stu_ID → Zip → CitǇ, so theƌe eǆists tƌaŶsitiǀe depeŶdeŶĐǇ.

To bring this relation into third normal form, we break the relation into two relations as follows –.

 Student_Details

Stu_ID Stu_Name Zip

Zip Codes

Zip City

Boyce-Codd Normal Form

Boyce-Codd Normal Form (BCNF) is an extension of Third Normal Form on strict terms. BCNF states that for any

non-tƌiǀial fuŶĐtioŶal depeŶdeŶĐǇ, X → A, X ŵust ďe a super-key.

In the above image, Stu_ID is the super-key in the relation Student_Detail and Zip is the super-key in the relation

ZipCodes. So,

Stu_ID → Stu_Naŵe, Zip

and

Zip → CitǇ

Which confirms that both the relations are in BCNF.

Fourth Normal Form (4NF)

When attributes in a relation have multi-valued dependency, further Normalization to 4NF and 5NF are required.

Let us first find out what multi-valued dependency is.

A multi-valued dependency is a typical kind of dependency in which each and every attribute within a relation

depends upon the other, yet none of them is a unique primary key.

We will illustrate this with an example. Consider a vendor supplying many items to many projects in an

organization. The following are the assumptions:

A vendor is capable of supplying many items.

A project uses many items.

A vendor supplies to many projects.

An item may be supplied by many vendors.

A multi valued dependency exists here because all the attributes depend upon the other and yet none of them

is a primary key having unique value.

Vendor Code Item Code Project No.

V1 I1 P1

V1 I2 P1

V1 I1 P3

V1 I2 P3

Page no: 9

V2 I2 P1

V2 I3 P1

V3 I1 P2

V3 I1 P3

The table can be expressed as the two 4NF relations given as following. The fact that vendors are capable of

supplying certain items and that they are assigned to supply for some projects in independently specified in

the 4NF relation.

Vendor-Supply

Vendor Code Item Code

V1 I1

V1 I2

V2 I2

V2 I3

V3 I1

Vendor-Project

Vendor Code Project No.

V1 P1

V1 P3

V2 P1

V3 P2

Fifth Normal Form (5NF)

These relations still have a problem. While defining the 4NF we mentioned that all the attributes depend

upon each other. While creating the two tables in the 4NF, although we have preserved the dependencies

between Vendor Code and Item code in the first table and Vendor Code and Item code in the second table,

we have lost the relationship between Item Code and Project No. If there were a primary key then this loss

of dependency would not have occurred. In order to revive this relationship, we must add a new table like

the following. Please note that during the entire process of normalization, this is the only step where a new

table is created by joining two attributes, rather than splitting them into separate tables.

Project No. Item Code

P1 11

P1 12

P2 11

P3 11

P3 13

Page no: 10

	Problem Without Normalization
	Boyce-Codd Normal Form

