
UNIT – 01

DISTRIBUTED SYSTEM

UNIT-01/LECTURE-01

Introduction ([RGPV/ Dec 2011 (7)]

The definition of distributed system is given below-

͞A distributed system is a collection of independent computers that appears to its users as

a single coherent system͟.

The definition has two aspects. The first one deals with hardware-the machine are

autonomous. The second one deals with software-the users think they are dealing with a

single system. Both are essential. The distributed system has two important characteristics,

first is that the difference between the various computers and the ways in which they

communicate are hidden from users and other important characteristic is that users and

applications can interact with a distributed system in a consistent and inform way regardless

of where and when interaction takes place

 Distributed systems should also be relatively easy to expand or scale. This characteristic is a

direct consequence of having independent computer but at the same time, hiding how

these computers take part in the system as a whole. A distributed system will normally be

continuously available although perhaps certain parts may be temporarily out of order. User

and application should notice that parts are being replaced or fixed or that new parts are

added to serve more users or applications.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

To support heterogeneous computer and networks while offering a single system view,

distributed systems are often organized by means of a layers of software that is logically

placed between a higher-level layer consisting of users and applications and a underneath

consisting of operating systems. Such a distributed system is sometimes called Middleware.

For example, consider a network of workstation in a university or company department. In

addition to each user’s personal workstation, there might be a pool of processors in the

machine room that are not assigned to specific users but are allocated dynamically as

needed. Such a system might have a single file system, with all files accessible from all

machines in the same way and using the same path name. also when a user types a

command the system could look for the best place to execute that command, possibly on

the user’s own workstation, possibly on an idle workstation belonging to someone else, and

possible on one of the unassigned processors in the machine room. If the system as a whole

looks and acts like a classical single-processor timesharing system, it qualifies as a

distributed system.

A distributed system is a collection of processors that do not share memory or clock.

Instead, each processor has its own local memory and the processor communicates with

each other through communication lines such as local or wide-area networks. The

processors in a distributed system vary in size and function. Such systems may include small

handhold or relative devices, personal computers, workstations, and large mainframe

computer systems.

The benefits of a distributed system include user access to the resources maintained by the

system and therefore computation speedup and improved data availability and reliability. A

distributed file system is a file-service system whose users, servers and storage devices are

dispersed among the sites of a distributed system. Accordingly service activity has to carried

out across the network, instead of a single centralized data repository, there are multiple

and independent storage devices.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Because a system is distributed, however it must provide mechanisms for process

synchronization and communication, for dealing with the deadlock problem and for dealing

with failures that are not encountered in a centralized system.

 Example of Distributed system ([RGPV/ Dec 2011 (7)]

 A large bank with hundreds of branch offices all over the world. Each office has a master

computer to store local accounts and handle local transactions. In addition, each computer

has the ability to talk to all other branch computers and with a central computer at

headquarters. If transactions can be done without regard to where a customer or account is,

and the users do not notice any difference between this system and the old centralized

mainframe that it replaced, it too would be considered a distributed system.

Autonomous – the machines are autonomous in distributed system

1. Single system view- the users think that they are dealing with single system

2. Heterogeneous computer & network- the workstations in distributed system may

differ from each other & also in way they communicate (network)

3. Interaction- Interactions of computers are hidden from users

4. Scalable- Distributed system should be scalable

5. Middleware- Distributed system may be organized as a means of layer of software &

placed between higher layer & underneath layer

Resource sharing and the Web Challenges

Advantages of Distributed System over Centralized System

The main purpose for the decentralization is economics. ͞The computing power of a CPU is

proportional to the square of its price͟. By paying twice as much, you could get four times

the performance. This observation fit the mainframe technology of its time quite well and

let most organization to buy the largest single machine they could afford. With

microprocessor technology, Grosch’s law no longer holds. For a few hundred dollars you can

we dont take any liability for the notes correctness. http://www.rgpvonline.com

get a CPU chip that can execute more instructions per second that one of the largest 1980s

mainframes. If you are willing to pay twice as much, you get the same CPU only running at a

slightly higher clock speed. As a result the most cost effective solution is frequently to

harness a large number of cheap CPUs together in a system. In effect, a distributed system

gives more bang for the buck.

A slight variation on this theme is the observation that a collection of microprocessors

cannot only give a better price/performance ratio than a single mainframe but may yield an

absolute performance that no mainframe can achieve at any price. Another potential

advantage of a distributed system over a centralized one is higher reliability. By distributing

the workload over many machines, a single chip failure will bring down at most one

machine, leaving the rest intact. Ideally if 5 percent of machine are down at any moment

the system would be able to continue to work with a 5 percent loss is performance.

Finally increment growth is also potentially a big plus. Often a company will buy a

mainframe with the intention of doing all its work on it. If the company prospers and the

workload grows, at a certain point the mainframe will no longer be adequate. The only

solutions are to either replace the mainframe with a larger one or add a second mainframe.

Both of these can cause major havoc with the company’s operations. In contrast with a

distributed system, it may be possible to simply add more processor to the system, thus

allowing it to expand gradually as the need arises.

Advantages of Distributed System over Independent PC’s

1.Data sharing- Allow many users access to a common data base

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2.Device Sharing -Allow many users to share expensive peripherals like color printers

3.Communication- Make human-to-human communication easier, for example, by

electronic mail.

4.Flexibility- Spread the workload over the available machines in the most cost effective

way.

Disadvantages of Distributed Systems

Although distributed systems have their strength, they also have their weaknesses. The first

problem with the distributed systems is software. With the current state of art, we do not

have much experience in designing, implementing and using distributed software. As more

research is done, this problem will diminish but for the moment it should not be

underestimated.

A second potential problem is due to the communication network. It can lose message,

which requires special software to handle, and it can become overloaded. When the

network saturates it must either be replaced or a second one must be added. In both cases,

some portion of one or more buildings may have to be rewired at great expense, or network

interface boards may have to be replaced. Once the system comes to depend on the

network, its loss or saturation can negate most of the advantages the distributed system

was built to achieve.

Finally, the easy sharing of data which is the advantage of distributed systems, may turn out

to be a two edged sword. If people can conveniently access data all over the system, they

may be equally able to conveniently access data that they have no business looking at. In

other words the security is often a problem.

The disadvantages of distributed systems are summarized in fig.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTIONS Year Marks

Q.1 What is distributed system? Give an example of

distributed system.

 Dec 2011 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT-01/LECTURE-02

System Models: Architectural models ([RGPV/ Dec 2013 (7)]

Client -Server

• 3-tier Architecture

• N-tier Architecture

• Tightly coupled

• Peer to Peer

1. Client-Server- Small Clients code contacts the server for data then formats & displays

it to the user. Input at the client is committed back to server when it represents a

permanent change.

2. 3-tier Architecture- 3-tier system move the client intelligence to a middle tier so that

stateless clients can be used. This simplifies application deployment. Most web

applications are 3-tier.

3. N-tier Architecture- The web application which further forward their request to

other enterprise services. This type of applications is the one most responsible for

the success of applications servers.

4. Tightly coupled- It refers to a set of highly integrated machine that run the same

process in parallel subdividing the task in parts that are made individually by each

one & then put back together to make the final result.

5. Peer to peer-An architecture where there is no special machine that provide a

service or manage the network resources. Instead all responsibilities are uniformly

divided among all machines known as peers.

Limitation of Distributed system

1. Slower

2. More complicated more expensive & less robust than centralized one Inherent

Limitation

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3. No global clock

– Due to unpredictable message delay, it is difficult to synchronize physical clocks

– Distributed schedule is difficult to implement

4. No shared memory

– It is difficult to obtain a coherent global view, which includes local state and messages in

transmission.

Distributed Shared Memory (DSM) ([RGPV/ Dec 2012 (7)], ([RGPV/ June2013 (7)]

• TraditioŶallǇ, distributed computing is based on message passing.

• DSM proǀides a ǀirtual address spaĐe that is shared aŵoŶg all nodes in a distributed

system.

• With DSM, prograŵs aĐĐess data iŶ the shared address space just as they access data in

traditional virtual memory.

• IŶ DSM, eaĐh Ŷode ĐaŶ oǁŶ data stored iŶ the shared address space, and the ownership

can change when data moves from one node to another.

• WheŶ a proĐess aĐĐesses data iŶ the shared address spaĐe, the DSM software layer,

implemented in the kernel or as a runtime library routine, maps the shared memory

address

to the physical memory.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The DSM

Advantages of DSM

• DSM hides the eǆpliĐit ŵessage passiŶg aŶd proǀides a simpler abstraction for sharing

data that programmers are used to.

• DSM alloǁs complex structures (e.g., pointer, array) to be passed by reference, which is

not supported by the message passing model.

• BǇ ŵoǀiŶg the eŶtire ďloĐk or page ĐoŶtaiŶiŶg the referenced data, make use of locality of

reference.

• Cheaper to ďuild thaŶ ŵultiprocessor systems.

• Good sĐalaďilitǇ Đoŵpared to ŵultiproĐessor sǇsteŵs.

• Prograŵs ǁritteŶ for shared ŵeŵorǇ ŵultiproĐessors ĐaŶ run on DSM systems.

Clock Synchronization

In centralized system, time is unambiguous. When a process wants to know the time, it

makes a system call and kernel tells it. If process A Asks fro the time, and then a little later

process B asks for the time, the value that B gets will be higher than the value A got. It will

certainly not be lower. In a distributed system, achieving agreement on time is not trivial. In

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unix, large programs are split into multiple source files, so that a change to one source file

only requires one file to be recompiled, not all the files. If a program consists of 100 files,

not having to recompile, everything because one file has been changed greatly increases

the speed at which programmers can work. The way make normally works is simple. When

the programmer has finished changing all the source files, he start make, which examines

the times at which all the source and object files were last modified. If the source file

input.c has time 2151 and the corresponding object file input.o has time 2150 make knows

that input.c has been changed since input.o was created and thus input.c must be

recompiled. On the other hand, if output.c has time 2144 and output.o hs tiem 2145, no

compilation is needed there. Thus make goes through all the source file to find out which

ones need to be recompiled and calls the compiler to recompile them.

Now imagine that there is no global agreement on time. Suppose that output.o has time

2144 as above and shortly thereafter output.c is modified but is assigned time 2143

because the clock on its machine is slightly behind, as shown in fig. make will not call the

compiler. The resulting executable binary program will then contain a mixture of object files

from the old sources and new sources. It will probably crash and the programmer will go

crazy trying to understand what is wrong with this code.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTIONS Year Marks

Q.2 Why architectural model is important in the

distributed system design?

Dec 2013 7

Q.1 Explain the different architecture of distributed

shared memory.

June 2013 7

Q.2 What are the three main approches for

designing distributed shared memory?

Dec 2012 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT-01/LECTURE-03

Summary on time and clocks in distributed systems

 The accurate timekeeping is important for distributed systems.

 algorithms (e.g. Cristian’s and NTP) synchronize clocks in spite of their drift and the

variability of message delays.

 for ordering of an arbitrary pair of events at different computers, clock

synchronization is not always practical.

 the happened-before relation is a partial order on events that reflects a flow of

information between them.

 Lamport clocks are counters that are updated according to the happened-before

relationship between events.

 vector clocks are an improvement on Lamport clocks,

 we can tell whether two events are ordered by happened-before or are concurrent by

comparing their vector timestamps.

Computer clocks and timing events

• Each computer in a DS has its own internal clock

– used by local processes to obtain the value of the current time

– processes on different computers can timestamp their events

– but clocks on different computers may give different times

– computer clocks drift from perfect time and their drift rates differ from one

another.

– clock drift rate: the relative amount that a computer clock differs from a

perfect clock

Even if clocks on all computers in a DS are set to the same time, their clocks will eventually

vary quite significantly unless corrections are applied.

The 'happened before' relation is essential to understanding logical clocks

we dont take any liability for the notes correctness. http://www.rgpvonline.com

 A distributed system is defined as a collection P of N processes pi, i = ϭ,Ϯ,… N

 Each process pi has a state si consisting of its variables (which it transforms as it

executes)

 Processes communicate only by messages (via a network)

 Actions of processes:

– Send, Receive, change own state

 Event: the occurrence of a single action that a process carries out as it executes e.g.

Send, Receive, change state

Events at a single process pi, can be placed in a total ordering denoted by the relation ®i

between the events.

Lamport’s Logical Clocks([RGPV/ Dec 2011 (7)], ([RGPV/ June2013 (5)],([RGPV/ June2014

(5)]

• Goal: iŵpleŵeŶt the happens before relation in a distributed system without global clock

• Assuŵe eaĐh proĐess has a ĐloĐk (counter)

• A sǇsteŵ of ĐloĐks is ĐorreĐt if a  b implies

C(a) < C(b)

• HappeŶs ďefore ĐaŶ ďe realized if the folloǁiŶg clock conditions are met:

[C1] For any two events a and b in a process Pi, if a  b then Ci(a) < Ci(b).

[C2] If a is the event of sending a message in process Pi, a and b is the event of receiving the

same message at Pj, then, Ci(a) < Cj(b).

Implement the Logical Clock

[IR1] Clock Ci is incremented between any two successive events in process Pi,

Ci := Ci(a) + d (d>0)

– It’s easy to see if a and b are two successive events in Pi and a  b, then Ci(b) = Ci(a) + d.

[IR2] If a is the event of sending a message m, with timestamp tm := Ci(a), by process Pi. On

receiving m by process Pj, Cj is set to a value greater than or equal to its present value and

greater than tm.

Cj := max(Cj , tm +d) (d>0)

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Lamport’s Logical Clock

Total Order

• Order eǀeŶts ďǇ their loĐal tiŵe, ďut Laŵport’s logical clock only defines a partial order.

• Break ties ďǇ a total orderiŶg oŶ processes

• Total orderiŶg of eǀeŶts (a  b):

• If a is any event at process Pi and b is any event at process Pj, then a b if either

Ci(a) < Cj(b) or

Ci(a) = Cj(b) and Pi << Pj

– << is any arbitrary relation that totally orders the processes to break ties. A simple way is

to implement

<< by using unique identification numbers.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Limitations of Lamport’s Clocks

• If a b then C(a) < C(b). However the reverse is not necessary true, but we know if C(a) <

C(b) then what?

• See figure, C(e11)< C(e22) and C(e11)< C(e32), however, e11 is causally related to event

e22,but not to event e32

S.NO RGPV QUESTIONS Year Marks

Q.1 Describe Lamport’s Logical Clocks and their limitations. June 2013

June 2014

5

Q.2 What is logical clock and how do we synchronize logical

clock in Lamport’s algorithm?

Dec 2011 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT-01/LECTURE-04

Vector Clock ([RGPV/ June 2013 (5)], ([RGPV/ June2014 (5)]

• VeĐtor ĐloĐk is proposed to deĐide ǁhether tǁo events are causally related or not by simply

looking at their timestamps

• VeĐtor ĐloĐk is aŶ arraǇ of iŶtegers iŶstead of just one integer. In a vector, each entry is used

to

represent the knowledge about the clock of other processes

• Ci[j] denotes Pi’s knowledge about the logical time at Pj

Implementation Rules

[IR1] Clock Ci is incremented between any two successive events in process Pi,

Ci := Ci(a) + d (d>0)

[IR2] If a is the event of sending a message m, with timestamp tm := Ci(a), by process Pi. On

receiving m by process Pj, Cj is updated as follows:

k, Cj[k] := max(Cj[k], tm[k])

Assertion: At any time, i, j: Ci[i] >= Cj[i]

Vector Clock

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain vector clock. June 2013

June 2014

5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT-01/LECTURE-05

Distributed Mutual Exclusion

Mutual Exclusion

Mutual exclusion refers to the problem of ensuring that no two processes can be in their

critical section at the same time. There are several resources in a system that must not be

used simultaneously by multiple processes, if program operation to be correct. For example,

a file must not be simultaneously updated by multiple processes. Similarly, use of unit

record peripherals such as tape drives or printers must be restricted to a single process at a

time. Therefore, exclusive access to such a shared resource by a process must be ensured.

This exclusiveness of access is called mutual exclusion between processes. The section of a

program that need exclusive access to shared resources are referred to as critical sections.

For mutual exclusion, means are introduced to prevent processes from executing

concurrently within their associated critical sections.

An algorithm for implementing mutual exclusion must satisfy the following requirements –

a) Mutual Exclusion – Given a shared resources accessed by multiple concurrent

processes, at any time only one process should access the resource. That is, a

process that has been granted the resource must release it before it can be granted

to another process.

b) No Starvation – If every process that is granted the resource eventually releases it,

every request must be eventually granted. In single-processor systems, mutual

exclusion is implemented using semaphores, monitors and similar constructs.

Requirements of Mutual Exclusion Algorithm

1.Freedom from Deadlocks

2.Freedom from starvation

3.Fairness

we dont take any liability for the notes correctness. http://www.rgpvonline.com

 Performance of mutual exclusion algorithm is measured by

1.No. of messages

2.Synchronization delay

3.Response time

4.System throughput

There are three algorithms which are used to achieve the mutual exclusion in distributed

system-

 Mutual Exclusion Algorithm

1.A Centralized Algorithm

2.A Distributed Algorithm

3.A Token Ring Algorithm

Centralized Algorithm ([RGPV/ June 2014 (7)]

One of the processes in the system is elected as the coordinator to coordinates the entry to

the critical sections. Each process that wants to enter a critical section must first seek

permission from the coordinator. If no other process is currently in that critical section, the

coordinator can immediately grant permission to the requesting process. However if two or

more processes concurrently ask for permission

to enter the same critical section. The coordinator knows that a different process is already

in the critical section, so it cannot grant permission. After executing a critical section, when

a process exits the critical section, it must notify the coordinator so that the coordinator can

grant permission to another process that has also asked for permission to enter the same

critical section.

Let us suppose that there is a coordinator process (Pc), and three other processes P1, P2, P3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

in the system. Also it is assumed that the requests are granted in the first-come, first-served

order for which the coordinator maintains a request queue. Suppose P1 wants to enter a

critical section for which it sends a request message to

Pc. On receiving the request message, Pc checks to see whether some other process is

currently in that critical section. Since no other process is in the critical section Pc

immediately sends back a reply message granting permission to P1.when the reply arrives,

P1 enters the critical section.

Now suppose if P1 is in critical section P2 asks for permission to enter the same critical

section by sending a request message to Pc. Since P1 is already in the critical section, P2

cannot be granted permission. Now let us assume that the coordinator does not return any

reply and the process that made the request remains blocked until it receive the reply from

the coordinator. Therefore, Pc does not send a reply to P2 immediately and enters its

we dont take any liability for the notes correctness. http://www.rgpvonline.com

request in the request queue.

Again, while P1 is still in the critical section P3 sends a request message to Pc asking for

permission to enter the same critical section. Obviously, P3 cannot be granted permission,

so no reply is sent immediately to P3 by Pc and its request in the request queue.

If P1 exits the critical section and sends a release message to Pc releasing its exclusive

access to the critical section. On receiving the release message Pc takes the first request

from the queue of deferred requests and sends reply message to the corresponding

process, granting it permission to enter the critical section. Thus Pc sends a reply message

to P2. After receiving the reply message P2 enters the critical section and when it exits the

critical section, it sends a release message to Pc. Again Pc takes the first request from the

request queue and sends a reply message to the corresponding process(P3). P3 enters the

critical section and when it exits the critical section, it sends a release message to Pc. Now

since there are no more requests Pc keeps waiting for the next request message.

This algorithm ensures the mutual exclusion because at a time , the coordinator allows only

one process to enter a critical section. The algorithm also ensures that no starvation will

occur because of the use of first-come, first served scheduling policy. Main advantage of

this algorithm is that it is simple to implement and requires only three message per critical

section entry – a request, a reply, and a release. The disadvantage of this scheme is that a

single coordinator is subject to a single point of failure and can become a performance

bottleneck in a large system. Distributed algorithm overcome these drawbacks.

Advantages of Centralized algorithm

1.Guarantees mutual exclusion

2.Easy to implement & requires only three messages per use of a critical section(request,

grant, release)

• Disadvantages of Centralized algorithm

1.The coordinator is a single point of failure

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2.Confusion between no reply & permission denied

3.A single coordinator can become a performance bottleneck

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain the following 1.difference between distributed and

centralized system.

June

2014

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT -01/LECTURE -06

Distributed algorithm([RGPV/ June2014 (7)]

• When a process wants to enter a critical region, it builds a message containing the name

of the critical region it wants to enter, its process number, and the current time. It then

sends the message to all other processes, conceptually including itself.

• When a process receives a request message from another process, the action it takes

depends on its state with respect to the critical region named in the message. Three cases

have to be distinguished:

1.If the receiver is not in the critical region and does not want to enter it, it sends back an

OK message to the sender.

2.If the receiver is already in the critical region, it does not reply. Instead, it queues the

request.

3.If the receiver wants to enter the critical region but has not yet done so, it compares the

timestamp in the incoming message with the one contained in the message that it has sent

everyone. The lowest one wins. If the incoming message is lower, the receiver sends back an

OK message. If its own message has a lower timestamp, the receiver queues the incoming

request and sends nothing.

4.After sending out requests asking permission to enter a critical region, a process sits back

and waits until everyone else has given permission. As soon as all the permissions are in, it

may enter the critical region. When it exits the critical region, it sends OK messages to all

processes on its queue and deletes them all from the queue.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

a) Two processes want to enter the same critical region at the same moment.

b) Process 0 has the lowest timestamp, so it wins.

c) When process 0 is done, it sends an OK also, so 2 can now enter the critical region.

• Advantages of Distributed algorithm

1. No single point of failure exits

2.Number of messages are 2(n-1)messages (n-1) request & (n-1) reply messages

3.No starvation, total ordering of messages

4.Deadlock free

5. Mutual exclusion guaranteed

• Disadvantages of Distributed algorithm

1.Slower

2. More complicated more expensive & less robust than centralized one.

Token Ring Algorithm

Mutual exclusion is achieved by using a single token that is circulated among the processes

in the system. A token is special type of message that entitles its holder to enter a critical

section. The processes in the system are logically organized in a ring structure and the token

we dont take any liability for the notes correctness. http://www.rgpvonline.com

is circulated from one process to another around the ring always in the same direction

(clockwise or anticlockwise).

The algorithm works as follows. When a process receive the token, it checks if it wants to

enter a critical section and act as follows –

a) If it wants to enter a critical section and exists from the critical section after finishing

its work in the critical section. It then passes the token along the ring to its neighbour

process. The process can enter only the critical section, it must wait until it gets the

token again.

b) If it does not want enter a critical section, it just passes the token along the ring to

its neighbour process.

Therefore, if none of the processes is interested in entering a critical section, the token

simply keeps circulating around the ring. Mutual exclusion is guaranteed by this algorithm

because at any instance of time only one process, can be in a critical section, since there is

only a single token. Furthermore, since the ring is unidirectional and a process is permitted

to enter only one critical section each time it gets the token starvation cannot occur. In this

algorithm the number of message per critical section entry may vary from 1 (when every

process always want to enter a critical section) to an unbounded value. Moreover, for a

we dont take any liability for the notes correctness. http://www.rgpvonline.com

total of n processes in the system, the waiting time form the moment a process wants to

enter a critical section until its actual entry may vary from the time needed to exchange 0 to

n-1 token passing messages Zero token passing messages are needed when the process

receives the token just when it wants to enter the critical section, whereas n-1 messages are

needed when the process wants to enter the critical section just after it has passed the

token to its neighbour process.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain the following 1.difference

between distributed and centralized

system.

June 2014 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT -01/LECTURE -07

Mutual exclusion in single-computer systems vs. distributed systems

In single-computer systems, the status of a shared resource and the status of users is readily

available in the shared memory, and solutions to the mutual exclusion problem can be

easily implemented using shared variables (e.g., semaphores). However, in distributed

systems, both the shared resources and the users may be distributed and shared memory

does not exist. Consequently, approaches based on shared variables are not applicable to

distributed systems and approaches based on message passing must be used.

The problem of mutual exclusion becomes much more complex in distributed systems (as

compared to single-computer systems) because of the lack of both shared memory and a

common physical clock and because of unpredictable message delays. Owing to these

factors, it is virtually impossible for a site in a distributed system to have current and

complete knowledge of the state of the system.

Requirement of mutual exclusion theorem ([RGPV/ June 2013 (7)]

In the problem of mutual exclusion, concurrent access to a shared resource by several

uncoordinated user-requests is serialized tosecure the integrity of the shared resource. It

requires that the actions performed by a user on a shared resource must be atomic. That is,

if several users concurrently access a shared resource then the actions performed by a user,

as far as the other users are concerned, must be instantaneous and indivisible such that the

net effect on the shared resource is the same as if user actions were executed serially, as

opposed to in an interleaved manner. The problem of mutual exclusion frequently arises in

distributed systems whenever concurrent access to shared resources by several sites is

involved. For correctness, it is necessary that the shared resource be accessed by a single

site (or process) at a time. A typical example is directory management, where an update to

we dont take any liability for the notes correctness. http://www.rgpvonline.com

a directory must be done atomically because if updates and reads to a directory proceed

concurrently, reads may obtain inconsistent information. If an entry contains several fields,

a read operation may read some fields before the update and some after the update.

Mutual exclusion is a fundamental issue in the design of distributed systems and an

efficient and robust technique for mutual exclusion is essential to the viable design of

distributed systems.

The primary objective of a mutual exclusion algorithm is to maintain mutual exclusion; that

is, to guarantee that only one request accesses the es at a time. In addition, the following

characteristics are considered important in a mutual exclusion algorithm:

Freedom from Deadlocks. Two or more sites should not endlessly wait for messages that

will never arrive.

Freedom from Starvation. A site should not be forced to wait indefinitely to execute es

while other sites are repeatedly executing es. That is, every requesting site should get an

opportunity to execute es in a finite time.

Fairness. Fairness dictates that requests must be executed in the order they are made (or

the order in which they arrive in the system). Since a physical global clock does not exist,

time is determined by logical clocks. Note that fairness implies freedom from starvation, but

not vice-versa.

Fault Tolerance. A mutual exclusion algorithm is fault-tolerant if in the wake of a failure, it

can reorganize itself so that it continues to function without any (prolonged) disruptions.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain Requirement of distributes

mutual exclusion. How performance

of distributed mutual exclusion are

measured.

June 2013

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT -01/LECTURE -08

Non-Token-Based Algorithms ([RGPV/ June 2013 (7)]

In non-taken-based mutual exclusion algorithms, a site communicates with a set of other

sites to arbitrate who should execute the CS next. For a site Si. request set Ri contains ids of

all those sites from which site Si must acquire permission before entering the CS.

Next, we discuss some non-token-based mutual exclusion algorithms which are good

representatives of this class. Non-token-based mutual exclusion algorithms use timestamps

to order requests for the CS and to resolve conflicts between simultaneous requests for the

CS. In all these algorithms, logical clocks are maintained and updated according to

Lamport's scheme . Each request for the CS gets a timestamp, and smaller timestamp

requests have priority over larger timestamp requests.

 Lamport's Algorithm

Lamport was the first to give a distributed mutual exclusion algorithm as an illustration of

his clock synchronization scheme [9]. In Lamport's algorithm, Vi: 1 .,:; i .,:; N :: Ri = {Sb S2, ...,

SN}. Every site Si keeps a queue, requesLqueuei' which contains mutual exclusion requests

ordered by their timestamps. This algorithm requires messages to be delivered in the FIFO

order between every pair of sites.

The Algorithm

Requesting the critical section:

1. When a site Si wants to enter the CS, it sends a REQUEST(tsi, i) message to all the sites in

its request set Ri and places the request on requesLqueuei. «tsi, i) is the timestamp of the

request.)

2. When a site Hj receives the REQUEST(t8i, i) message from site Si, it retums a timestamped

we dont take any liability for the notes correctness. http://www.rgpvonline.com

REPLY message to and places site Si 's request on requesLqueue}.

Executing the critical section. Site Hi enters the CS when the two following conditions hold:

[L1:] Hi has received a message with timestamp larger than (t8i, i) from all other sites.

[L2:] Hi'S request is at the top of requesLqueuei.

Releasing the critical section.

3. Site Si, upon exiting the CS, removes its request from the top of its request queue and

sends a timestamped RELEASE message to all the sites in its request set.

4. When a site S} receives a RELEASE message from site Hi, it removes Si'S request from its

request queue.

When a site removes a request from its request queue, its own request may come at the

top of the queue, enabling it to enter the CS. The algorithm executes CS requests in the

increasing order of timestamps.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain any non-token based

distributed algorithm.

June 2013

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT -01/LECTURE- 09

Token-Based Algorithms ([RGPV/ June 2013 (7)], ([RGPV/ June 2014 (7)]

In token-based algorithms, a unique token is shared among all sites. A site is allowed to enter its CS

if it possesses the token. Depending upon the way a site carries out its search for the token, there

are numerous token-based algorithms. Next, we discuss some representative token-based mutual

exclusion algorithms.

Before we start with the discussion of token-based algorithms, two comments are in order: First,

token-based algorithms use sequence numbers instead of timestamps. Every request for the token

contains a sequence number and the sequence numbers of sites advance independently. A site

increments its sequence number counter every time it makes a request for the token. A primary

function of the sequence numbers is to distinguish between old and current requests. Second, a

correctness proof of token-based algorithms to ensure that mutual exclusion is enforced is trivial

because an algorithm guarantees mutual exclusion so long as a site holds the token during the

execution of the CS. Rather, the issues of freedom from starvation and freedom from deadlock are

prominent.

Comparison of mutual exclusion Algorithms

Election algorithms

Election algorithms attempt to locate the process with the highest process number and designate

it as coordinator.

1. The Bully Algorithm

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2. The Ring Algorithm

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain any token based

distributed algorithm.

June 2013

10

Q.2 Classify the token based

algorithm and signify the

importance of token based

algorithm in different

scenario’s.

June 2014

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT -01/LECTURE -10

Bully Algorithm ([RGPV/ June 2013 (10)], ([RGPV/ June 2014 (10)]

• The group consists of 8 processes. Previously process 7 was the coordinator, but it has just

crashed. Process 4 is the first one to notice this, so it sends ELECTION messages to all the

processes higher than it, namely 5, 6, and 7

• Processes 5 and 6 both respond with OK, Upon getting the first of these responses, 4

knows that its job is over. It just sits back and waits to see who the winner will be.

• both 5 and 6 hold elections, each one only sending messages to those processes higher

than itself.

• process 6 tells 5 that it will take over. At this point 6 knows that 7 is dead and that it (6) is

the winner. When it is ready to take over, 6 announces this by sending a COORDINATOR

message to all running processes.

• When 4 gets this message, it can now continue with the operation it was trying to do

when it discovered that 7 was dead, but using 6 as the coordinator this time. In this way the

failure of 7 is handled and the work can continue.

• If process 7 is ever restarted, it will just send all the others a COORDINATOR message and

bully them into submission.

The bully election algorithm. (a) Process 4 holds an election. (b) Processes 5 and 6 respond,

telling 4 to stop. (c) Now 5 and 6 each hold an election. (d) Process 6 tells 5 to stop. (e)

Process6 wins and tells everyone.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Ring Algorithm

The algorithm is based on the ring-based election algorithm. In this algorithm it is assumed

that all the processes in the system are organized in a logical ring. The ring is unidirectional

in the sense that all messages related to the election algorithm are always passed only in

one direction. Every process in the system knows the structure of the ring, so that each

process knows who its successor is. If the successor of the sender process is down, the

sender can skip over the successor or the one after that, until an active the algorithm works

as follows-

When any process notices that the coordinator is not functioning, it builds an ELECTION

message containing its own process number and sends the message to its successor. If the

successor is down, the sender skips over the successor and goes to the next member along,

the ring, or the one after that, until a process is located. At each step, the sender adds its

own process number to the list in the message. Eventually, the message gets back to the

process that started it. That process recognizes this event when it receives an incoming

message containing its own process number. At that point the message type is change to

COORDINATOR and circulated once again, this time to inform everyone else who the

coordinator is and who the members of the new ring are. When this message is circulated

once, it is removed and everyone goes back to work. In fig. we see what happen, if two

we dont take any liability for the notes correctness. http://www.rgpvonline.com

processes 2 and 5, simultaneously discover that the previous coordinator, process 7 has

crashed. Each of these builds an ELECTION message and starts circulating it. Both messages

will go all the way around and both 2 and 5 will convert them into COORDINATOR message

with exactly the same members and in the order. When both have gone around again, both

will be removed. It does no harm extra messages circulating, at most it wastes a little

bandwidth.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain any token based

distributed algorithm.

June 2013

10

Q.2 Classify the token based

algorithm and signify the

importance of token based

algorithm in different

scenario’s.

June 2014

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

REFERENCES

BOOK AUTHOR

PRIORITY

Distributed

operating

systems; Concepts

and design P K Sinha

1

Distributed

systems:

Principles and

paradigms Tanenbaum and Steen

2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

we dont take any liability for the notes correctness. http://www.rgpvonline.com

