
1

UNIT-05

DISTRIBUTED ALGORITHMS

UNIT- 05/LECTURE- 01

Distributed Algorithms

A process (a node in a computer network) is in general not connected directly to every

other process by a channel. A node can send packets of information directly only to a subset

of the nodes called the neighbours of the node. Routing is the term used to describe the

decision procedure by which a node selects one (or, sometimes, more) of its neighbours to

forward a packet on its way to an ultimate destination. The objective in designing a routing

algorithm is to generate (for each node) a decision-making procedure to perform this

function and guarantee delivery of each packet.

It will be clear that some information about the topology of the network must be stored in

each node as a working basis for the (local) decision procedure; we shall refer to this

information as the routing tables. With the introduction of these tables the routing problem

can be algorithmically divided into two parts; the definition of the table structure is of

course related to the algorithmically design.

(1) Table computation. The routing tables must be computed when the network is initialized

and must be brought up to date if the topology of the network changes.

(2) Packet forwarding. When a packet is to be sent through the network it must be

forwarded using the routing tables.

Criteria for ͞good͟ routing methods include the following.

(1) Correctness. The algorithm must deliver every packet offered to the network to its

ultimate destination.

(2) Efficiency. algorithm must send packets through ͞good͟ paths, e.g., paths that suffer

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

only a small delay and ensure high throughput of the entire network. An algorithm is called

optimal if it uses the ͞best͟ paths.

(3) Complexity. algorithm for the computation of the tables must use as few messages,

time, and storage as possible. Other aspects of complexity are how fast a routing decision

can be made, how fast a packet can be made ready for transmission, etc., but these aspects

will receive less attention in this chapter.

(4) Robustness. In the case of a topological change (the addition or removal of a channel or

node) the algorithm updates the routing tables in order to perform the routing function in

the modified network.

(5) Adaptiveness. algorithm balances the load of channels and nodes by adapting the tables

in order to avoid paths through channels or nodes that are very busy, preferring channels

and nodes with a currently light load.

(6) Fairness. algorithm must provide service to every user in the same degree.

These criteria are sometimes conflicting, and most algorithms perform well only w.r.t. a

subset of them.

As usual, a network is represented as a graph, where the nodes of the graph are the nodes

of the network, and there is an edge between two nodes if they are neighbours (i.e., they

have a communication channel between them). The optimality of an algorithm depends on

what is called a ͞best͟ path in the graph; there are several notions of what is ͞best͟, each

with its own class of routing algorithms:

(1) Minimum hop. cost of using a path is measured as the number of hops (traversed

channels or steps from node to node) of the path. A minimum-hop routing algorithm uses a

path with the smallest possible number of hops.

(2) Shortest path. Each channel is statically assigned a (non-negative) weight, and the cost

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

of a path is measured as the sum of the weights of the channels in the path. A shortest-path

algorithm uses a path with lowest possible cost.

(3) Minimum delay. Each channel is dynamically assigned a weight, depending on the traffic

on the channel. A minimum-delay algorithm repeatedly revises the tables in such a way that

paths with a (near) minimal total delay are always chosen. As the delays encountered on

the channels depend on the actual traffic, the various packets transmitted through the

network influence each other.

Other notions of the optimality of paths may be useful in special applications.

Destination-based Routing ([RGPV/June 2014(4)]

The routing decision made when forwarding a packet is usually based only on the

destination of the packet (and the contents of the routing tables), and is independent of the

original sender (the source) of the packet. Routing can ignore the source and still use

optimal paths. The results do not depend on the choice of a particular optimality criterion

for paths, but the following assumptions must hold. (Recall that a path is simple if it

contains each node at most once, and the path is a cycle if the first node equals the last

node.)

(1) The cost of sending a packet via a path P is independent of the actual utilization of the

path, in particular, the use of edges of P by other messages. This assumption allows us to

regard the cost of using path P as a function of the path; thus denote the cost of P by C(P)∈

.

(2) The cost of the concatenation of two paths equals the sum of the costs of the

concatenated paths, i.e., for all i = 0, …, k,

C;ͤu0, u1, …, ukͥͿ = C;ͤu0, …,uiͥͿ + C;ͤui, …, ukͥͿ.

Consequently, the cost of the empty path (uo) (this is a path from uo to uo) satisfies C((uo))

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

= 0.

(3) The graph does not contain a cycle of negative cost.

(These criteria are satisfied by minimum-hop and shortest-path cost criteria.) A path from u

to υ is called optimal if there exists no path from uto v with lower cost. Observe that an

optimal path is not always unique; there may exist different paths with the same (minimal)

cost.

Algorithm DESTINATION-BASED FORWARDING (FOR NODE u).

Lemma The forwarding mechanism delivers every packet at its destination if and only if the

routing tables are cycle-free.

Proof. If the tables contain a cycle for some destination d a packet for d is never delivered if

its source is a node in the cycle.

Assume the tables are cycle-free and let a packet with destination d (and source u0) be

forwarded via uo,u1,u2, … If the saŵe Ŷode occuƌs twiceiŶ this seƋueŶce, say ui = uj, then the

tables contain a cycle, namely ۃui, …, ujۄ, contradicting the assumption that the tables are

cycle-free.Thus, each node occurs at most once, which implies that this sequence isfinite,

ending, say, in node uk(k < N). According to the forwarding procedure the sequence can only

end in d, i.e., uk = d and the packet has reached its destination in at most N — 1 hops.

In some routing algorithms it is the case that the tables are not cycle-free during their

computation, but only when the table computation phase has finished. When such an

algorithm is used, a packet may traverse a cycle during computation of the tables, but

reaches its destination in at most N — 1 hops after completion of the table computation if

topological changes cease. If topological changes do not cease, i.e., the network is subject

to an infinite sequence of topological changes, packets do not necessarily reach their

destination even if tables are cycle-free during updates.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

Bifurcated routing for minimum delay

If routing via minimum-delay paths is required, and the delay of a channel depends on its

utilization (thus assumption (1) at the beginning of this section is not valid), the cost of using

a path cannot simply be assessed as a function of this path alone. In addition, the traffic on

the channel must be taken into account. To avoid congestion (and the resulting higher

delay) on a path, it is usually necessary to send packets having the same source-destination

pair via different paths; the traffic for this pair ͞splits͟ at one or more intermediate nodes as

depicted in Figure 4.3.Routing methods that use different paths towards the same

destination are called multiple-path or bifurcated routing methods.

EXAMPLE OF BIFURCATED ROUTING.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

https://www.safaribooksonline.com/library/view/introduction-to-distributed/9781107385603/xhtml/chapter04.html#ch4fig3

6

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain the following (A)destination

based routing.

June 2014 4

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

UNIT- 05/LECTURE- 02

Deadlock free Packet switching ([RGPV/June 2014(4)]

Messages (packets) travelling through a packet-switched communication network must be

stored at each node before being forwarded to the next node on the path to their

destination. Each node of the network reserves some buffer space for this purpose. As the

amount of buffer space is finite in each node, situations may occur where no packet can be

forwarded because all buffers in the next node are occupied, as illustrated by Figure. Each of

the four nodes has B buffers, each capable of containing exactly one packet. Node B has sent

B packets with destination υ to t, and node υ has sent B packets with destination s to u. All

buffers in u and υ are now occupied, and consequently none of the packets stored in t and u

can be forwarded towards its destination.

Situations where a group of packets can never reach their destination because they are all

waiting for the use of a buffer currently occupied by another packet in the group are

referred to as store-and-forward deadlocks. (Other types of deadlock will be discussed

briefly at the end of this chapter.) An important problem in the design of packet-switching

networks is how to deal with store-and-forward deadlocks. In this chapter we shall treat

several methods, referred to as controllers, that can be used to avoid the possibility of

store-and-forward deadlocks by introducing restrictions on when a packet can be generated

or forwarded. Methods of avoiding store-and-forward deadlocks are found in the network

layer of the OSI reference model.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

https://www.safaribooksonline.com/library/view/introduction-to-distributed/9781107385603/xhtml/chapter05.html#ch5fig1

8

AN EXAMPLE OF A STORE-AND-FORWARD DEADLOCK.

Two kinds of method will be discussed, based on structured and unstructured buffer pools.

Methods using structured buffer pools will identify for a node and a packet a specific buffer

that must be taken if a packet is generated or received. If this buffer is occupied, the packet

cannot be accepted. In methods using unstructured buffer pools (Section 5.3) all buffers are

equal; the method only prescribes whether or not a packet can be accepted, but does not

determine in which buffer it must be placed.

Introduction

As usual, the network is modelled by a graph G = (V, E); the distance between nodes is

measured in hops. Each node has B buffers for temporarily storing packets. The set of all

buffers is denoted , and the symbols b, c, bu, etc., are used to denote buffers.

The handling of packets by the nodes is described by the following three types of moves

that can occur in the network.

(1) Generation. A node u ͞creates͟ a new packet p (actually by accepting the packet from a

higher level protocol) and places it in an empty buffer in u. The node u is called the source

of p in this case.

(2) Forwarding. A packet p is forwarded from a node u to an empty buffer in the next node

w on its route (the route is determined by the routing algorithm used). As a result of the

move the buffer previously occupied by p becomes empty. Although the controllers that we

shall define may forbid moves, it is assumed that the network always allows this move, i.e.,

we dont take any liability for the notes correctness. http://www.rgpvonline.com

https://www.safaribooksonline.com/library/view/introduction-to-distributed/9781107385603/xhtml/chapter05.html#chapter05section03

9

if the controller does not forbid it, it is applicable.

In systems with synchronous message passing this move is easily seen to be a single

transition. In systems with asynchronous message passing the move is not a single

transition, but it can be implemented, for example, as follows. Node u repeatedly transmits

p to w, but does not discard the packet from the buffer as long as no acknowledgement is

received. When node w receives the packet it decides whether it will accept the packet in

one of its buffers. If so, the packet is placed in the buffer and an acknowledgement is sent

to u, otherwise the packet is simply ignored. Of course, more efficient protocols can be

designed to implement the move, for example those where u does not transmit p until u

knows that w will accept p. In either case the move consists of several transitions of the

types , but it will be considered as a single step for the purpose of this chapter.

(3) Consumption. A packet p occupying a buffer in its destination node is removed from the

buffer. It is assumed that the network always allows this move.

Denote by the collection of all paths followed by the packets. This collection is

determined by the routing algorithm ,how it is determined need not concern us here. Let k

be the number of hops in the longest path in . It is not assumed that k equals the

diameter G; k may exceed the diameter if the routing algorithm does not select minimum-

hop paths, and k may be smaller than the diameter if all communication in G is between

nodes at limited distances.

As is seen from the example given at the beginning of this chapter, dead-locks may arise if

all moves are allowed to occur unrestrictedly (barring the trivial restriction that u must have

an empty buffer if a packet is generated in u and w must have an empty buffer if a packet is

forwarded to w). We shall now define a controller as an algorithm that permits or forbids

various moves in the network, subject to the following requirements.

(1) The consumption of a packet (at its destination) is always allowed.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

(2) The generation of a packet in a node where all buffers are empty is always allowed.

(3) The controller uses only local information, i.e., the decision whether a packet can be

accepted in node u depends only on information known to u or contained in the packet.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain the following terms(i)

deadlock free packet switching.

June 2014 4

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

UNIT -05/LECTURE -03

Traversal Algorithms

The wave algorithms in which all events of a wave are totally ordered by the causality

relation and in which the last event occurs in the same process as the first event.

Definition A traversal algorithm is an algorithm with the following three properties.

(1) In each computation there is one initiator, which starts the algorithm by sending out

exactly one message.

(2) A process, upon receipt of a message, either sends out one message or decides.

The first two properties imply that in each finite computation exactly one process decides.

The algorithm is said to terminate in the single process that decides.

(3) The algorithm terminates in the initiator and when this happens, each process has sent a

message at least once.

In each reachable configuration of a traversal algorithm there is either exactly one message

in transit, or exactly one process that has just received a message and not (yet) sent a

message in reply. In a more abstract view the messages of a computation taken together

can be seen as a single object (a token) that is handed from process to process and so

͞visits͟ all processes.

Election Algorithms ([RGPV/ June 2013 (7), [RGPV/ June 2014 (4)])

The election problem was first posed, who also proposed the first solution. The problem is

to start from a configuration where all processes are in the same state, and arrive at a

configuration where exactly one process is in state leader and all other processes are in the

state lost.

An algorithm for choosing a unique process to play a particular role is called an election

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

algorithm. For example, in a variant of our central-server algorithm for mutual exclusion,

the ͚server͛ is chosen from among the processes that need to use the critical section. An

election algorithm is needed for this choice. It is essential that all the processes agree on

the choice. Afterwards, if the process that plays the role of server wishes to retire then

another election is required to choose a replacement.

An election under the processes must be held if a centralized algorithm is to be executed

and there is no a priori candidate to serve as the initiator of this algorithm. For example,

this could be the case for an initialization procedure that must be executed initially or after

a crash of the system. Because the set of active processes may not be known in advance it is

not possible to assign one process once and for all to the role of leader.

Definition An election algorithm is an algorithm that satisfies the following properties.

(1) Each process has the same local algorithm.

(2) The algorithm is decentralized, i.e., a computation can be initialized by an arbitrary non-

empty subset of the processes.

(3) The algorithm reaches a terminal configuration in each computation, and in each

reachable terminal configuration there is exactly one process in the state leader and all

other processes are in the state lost.

The last property is sometimes weakened to require only that exactly one process is in the

state leader. It is then the case that the elected process is aware that it has won the

election, but the losers are not (yet) aware of their loss. If an algorithm satisfying this

weaker requirement is given, it can easily be extended by a flooding, initiated by the leader,

in which all processes are informed of the result of the election. This additional notification

is omitted in some algorithms in this chapter.

A ring-based election algorithm ([RGPV/Dec 2012 (7)]

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

 The algorithm of Chang and Roberts is suitable for a collection of processes arranged in a

logical ring. Each process pi has a communication channel to the next process in the ring, p(i

+ 1)mod N , and all messages are sent clockwise around the ring. We assume that no

failures occur, and that the system is asynchronous. The goal of this algorithm is to elect a

single process called the coordinator, which is the process with the largest identifier.

Initially, every process is marked as a non-participant in an election. Any process can begin

an election. It proceeds by marking itself as a participant, placing its identifier in an election

message and sending it to its clockwise neighbour. When a process receives an election

message, it compares the identifier in the message with its own. If the arrived identifier is

greater, then it forwards the message to its neighbour. If the arrived identifier is smaller and

the receiver is not a participant, then it substitutes its own identifier in the message and

forwards it; but it does not forward the message if it is already a participant. On forwarding

an election message in any case, the process marks itself as a participant.

If, however, the received identifier is that of the receiver itself, then this process͛s identifier

must be the greatest, and it becomes the coordinator. The coordinator marks itself as a

non-participant once more and sends an elected message to its neighbour, announcing its

election and enclosing its identity. When a process pi receives an elected message, it marks

itself as a nonparticipant, sets its variable elected to the identifier in the message and,

unless it is the new coordinator, forwards the message to its neighbour.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

It is easy to see that condition E1 is met. All identifiers are compared, since a process must

receive its own identifier back before sending an elected message. For any two processes,

the one with the larger identifier will not pass on the other͛s identifier. It is therefore

impossible that both should receive their own identifier back. Condition E2 follows

immediately from the guaranteed traversals of the ring (there are no failures). Note how

the non-participant and participant states are used so that duplicate messages arising when

two processes start an election at the same time are extinguished as soon as possible, and

always before the ͚winning͛ election result has been announced.

If only a single process starts an election, then the worst-performing case is when its anti-

clockwise neighbour has the highest identifier. A total of N – 1 messages are then required

to reach this neighbour, which will not announce its election until its identifier has

completed another circuit, taking a further N messages. The elected message is then sent N

times, making 3N – 1 messages in all. The turnaround time is also 3N – 1 , since these

messages are sent sequentially.

An example of a ring-based election in progress is shown. The election message currently

contains 24, but process 28 will replace this with its identifier when the message reaches it.

While the ring-based algorithm is useful for understanding the properties of election

algorithms in general, the fact that it tolerates no failures makes it of limited practical value.

However, with a reliable failure detector it is in principle possible to reconstitute the ring

when a process crashes.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

S.NO RGPV QUESTION YEAR MARKS

Q.1 What is election algorithm? Suppose that two processes

detect the demise of the coordinator simultaneously and

both decide to hold an election using the bully algorithm. In

this situation what happens.

June

2013

7

Q.2 Describe the Ring election algorithm with example. Discuss

the complexity of ring election algorithm in terms of

message.

Dec 2012 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

UNIT -05/LECTURE -04

The bully algorithm ([RGPV/June 2012(4)]

The bully algorithm allows processes to crash during an election, although it assumes that

message delivery between processes is reliable. Unlike the ring-based algorithm, this

algorithm assumes that the system is synchronous: it uses timeouts to detect a process

failure. Another difference is that the ring-based algorithm assumed that processes have

minimal a priori knowledge of one another: each knows only how to communicate with its

neighbour, and none knows the identifiers of the other processes. The bully algorithm, on

the other hand, assumes that each process knows which processes have higher identifiers,

and that it can communicate with all such processes.

There are three types of message in this algorithm: an election message is sent to announce

an election; an answer message is sent in response to an election message and a

coordinator message is sent to announce the identity of the elected process – the new

͚coordinator͛. A process begins an election when it notices, through timeouts, that the

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

coordinator has failed. Several processes may discover this concurrently. Since the system is

synchronous, we can construct a reliable failure detector. There is a maximum message

transmission delay, Ttrans , and a maximum delay for processing a message Tprocess .

Therefore, we can calculate a time T = 2Ttrans + Tprocess that is an upper bound on the

time that can elapse between sending a message to another process and receiving a

response. If no response arrives within time T, then the local failure detector can report that

the intended recipient of the request has failed.

The process that knows it has the highest identifier can elect itself as the coordinator simply

by sending a coordinator message to all processes with lower identifiers. On the other hand,

a process with a lower identifier can begin an election by sending an election message to

those processes that have a higher identifier and awaiting answer messages in response. If

none arrives within time T, the process considers itself the coordinator and sends a

coordinator message to all processes with lower identifiers announcing this. Otherwise, the

process waits a further period T฀ for a coordinator message to arrive from the new

coordinator. If none arrives, it begins another election.

If a process pi receives a coordinator message, it sets its variable electedi to the identifier of

the coordinator contained within it and treats that process as the coordinator. If a process

receives an election message, it sends back an answer message and begins another election

– unless it has begun one already. When a process is started to replace a crashed process, it

begins an election. If it has the highest process identifier, then it will decide that it is the

coordinator and announce this to the other processes. Thus it will become the coordinator,

even though the current coordinator is functioning. It is for this reason that the algorithm is

called the ͚bully͛ algorithm. There are four processes, p1 –p4 . Process p1 detects the

failure of the coordinator p4 and announces an election. On receiving an election message

from p1 , processes p2 and p3 send answer messages to p1 and begin their own elections;

p3 sends an answer message to p2 , but p3 receives no answer message from the failed

process p4 (stage2). It therefore decides that it is the coordinator. But before it can send

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

out the coordinator message, it too fails (stage 3). When p1 ͛s timeout period T฀ expires

(which we assume occurs before p2 ͛s timeout expires), it deduces the absence of a

coordinator message and begins another election. Eventually, p2 is elected coordinator

(stage 4).

This algorithm clearly meets the liveness condition E2, by the assumption of reliable

message delivery. And if no process is replaced, then the algorithm meets condition E1. It is

impossible for two processes to decide that they are the coordinator, since the process with

the lower identifier will discover that the other exists and defer to it. But the algorithm is

not guaranteed to meet the safety condition E1 if processes that have crashed are replaced

by processes with the same identifiers. A process that replaces a crashed process p may

decide that it has the highest identifier just as another process (which has detected p͛s

crash) decides that it has the highest identifier. Two processes will therefore announce

themselves as the coordinator concurrently. Unfortunately, there are no guarantees on

message delivery order, and the recipients of these messages may reach different

conclusions on which is the coordinator process. Furthermore, condition E1 may be broken

if the assumed timeout values turn out to be inaccurate – that is, if the processes͛ failure

detector is unreliable.

Taking the example just given, suppose that either p3 had not failed but was just running

unusually slowly (that is, that the assumption that the system is synchronous is incorrect),

or that p3 had failed but was then replaced. Just as p2 sends its coordinator message, p3 (or

its replacement) does the same. p2 receives p3 ͚s coordinator message after it has sent its

own and so sets elected2 = p3 . Due to variable message transmission delays, p1 receives p2

͛s coordinator message after p3 ͛s and so eventually sets elected1 = p2 . Condition E1 has

been broken. With regard to the performance of the algorithm, in the best case the process

with the second-highest identifier notices the coordinator͛s failure. Then it can immediately

elect itself and send N – 2 coordinator messages. The turnaround time is one message. The

bully algorithm requires O N2 ฀ ฀ messages in the worst case – that is, when the process

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

with the lowest identifier first detects the coordinator͛s failure. For then N – 1 processes

altogether begin elections, each sending messages to processes with higher

identifiers.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Write short note on bully algorithm. Dec 2012 4

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

UNIT- 05/LECTURE- 05

CORBA

We start our study of distributed object-based systems by taking a look at the Common

Object Request Broker Architecture, simply referred to as CORBA. As its name suggests,

CORBA is not so much a distributed system but rather the specification of one. These

specifications have been drawn up by the Object Management Group (OMG), a non-profit

organization with over 800 members, primarily from industry. An important goal of the

OMG with respect to CORBA was to define a distributed system that could overcome many

of the interoperability problems with integrating networked applications. The first CORBA

specifications became available in the beginning of the 1990s. At present, implementations

of CORBA version 2.4 are widely deployed, whereas the first CORBA version 3 systems are

becoming available. Like many other systems that are the result of the work of committees,

CORBA has features and facilities in abundance. The core specifications consist of well over

700 pages, and another 1,200 are used to specify the various services that are built on top

of that core. And naturally, each CORBA implementation has its own extensions because

there is always something that each vendor feels cannot be missed but was not included in

the specifications. CORBA illustrates again that making a distributed system that is simple

may be a somewhat overwhelmingly difficult exercise.

In the following pages, we will not discuss all the things that CORBA has to offer, but instead

concentrate only on the parts that are essential to it as a distributed system and that

characterize it with respect to other object-based distributed systems.

Overview of CORBA

The global architecture of CORBA adheres to a reference model of the OMG that was laid

down in (OMG, 1997). This reference model consists of four groups of architectural

elements connected to what is called the

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

Object Request Broker (ORB) ([RGPV/June 2013(5), ([RGPV/June 2014(5)]

The ORB forms the core of any CORBA distributed system; it is responsible for enabling

communication between objects and their clients while hiding issues related to distribution

and heterogeneity. In many systems, the ORB is implemented as libraries that are linked

with a client and server application, and that offers basic communication services. We

return to the ORB below when discussing CORBA͛s object model. Besides objects that are

built as part of specific applications, the reference model also distinguishes what are known

as CORBA facilities. Facilities are constructed as compositions of CORBA services (which we

discuss below), and are split into two different groups. Horizontal facilities consist of

general purpose high-level services that are independent of application domains. Such

services currently include those for user interfaces, information management, system

management, and task management (which is used to define workflow systems).

Vertical facilities consist of high-level services that are targeted to a specific application

domain such as electronic commerce, banking, manufacturing, etc. We will not discuss

application objects and CORBA facilities in any detail, but rather concentrate on the basic

services and the ORB.

Object Model

 In this model, the implementation of an object resides in the address space of a server. It is

interesting to note that the CORBA specifications never explicitly state that objects should

be implemented only as remote objects. However, virtually all CORBA systems support only

this model. In addition, the specifications often suggest that distributed objects in CORBA

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

are actually remote objects. Later, when discussing the Globe object model, we show how a

completely different model of an object could, in principle, be equally well supported by

CORBA.

Objects and services are specified in the CORBA Interface Definition Language (IDL). CORBA

IDL is similar to other interface definition languages in that it provides a precise syntax for

expressing methods and their parameters. It is not possible to describe semantics in CORBA

IDL. An interface is a collection of methods, and objects specify which interfaces they

implement. Interface specifications can be given only by means of IDL. As we shall see later,

in systems such as Distributed COM and Globe, interfaces are specified at a lower level in

the form of tables. These so-called binary interfaces are by their nature independent of any

programming language. In CORBA, however, it is necessary to provide exact rules

concerning the mapping of IDL specifications to existing programming languages. At

present, such rules have been given for a number of languages, including C, C++, Java,

Smalltalk, Ada, and COBOL. Given that CORBA is organized as a collection of clients and

object servers, the general organization of a CORBA system is shown.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Write short note on (i) object request

broker (ORB) architecture.

June 2013,June

2014

5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

UNIT -05/LECTURE -06

Underlying any process in CORBA, be it a client or server, is the ORB. The ORB can best be

seen as the runtime system that is responsible for handling the basic communication

between a client and an object. This basic communication consists of ensuring that an

invocation is sent to the object͛s server and that the reply is passed back to the client. From

the perspective of a process, the ORB offers only a few services itself.

One of these services is manipulating object references. Such references are generally

dependent on a particular ORB. An ORB will therefore offer operations to marshal and

unmarshal object references so that they can be exchanged between processes, as well as

operations for comparing references. Object references are discussed in detail below.

Other operations offered by an ORB deal with initially finding the services that are available

to a process. In general, it provides a means to obtain an initial reference to an object

implementing a specific CORBA service. For example, in order to make use of a naming

service, it is necessary that a process knows how to refer to that service. These initialization

aspects apply equally well to other services.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

Besides the ORB interface, clients and servers see hardly anything of the ORB. Instead, they

generally see only stubs for handling method invocations for specific objects. A client

application usually has a proxy available that implements the same interface as each object

it is using. A proxy is a client-side stub that merely marshals an invocation request and

sends that request to the server. A response from that server is unmarshaled and passed

back to the client. Note that the interface between a proxy and the ORB does not have to

be standardized. Because CORBA assumes that all interfaces are given in IDL, CORBA

implementations offer an IDL compiler to developers that generates the necessary code to

handle communication between the client and server ORB.

However, there are occasions in which statically defined interfaces are simply not available

to a client. Instead, what it needs is to find out during runtime what the interface to a

specific object looks like, and subsequently compose an invocation request for that object.

For this purpose, CORBA offers a Dynamic Invocation Interface (DII) to clients, which allows

them to construct an invocation request at runtime. In essence, the DII provides a generic

invoke operation, which takes an object reference, a method identifier, and a list of input

values as parameters, and returns its result in a list of output variables provided by the

caller.

A CORBA system provides an object adapter, which takes care of forwarding incoming

requests to the proper object. The actual unmarshaling at the server side is done by means

of stubs, called skeletons in CORBA, but it is also possible that the object implementation

takes care of= unmarshaling. As in the case of clients, server-side stubs can either be

statically compiled from IDL specifications, or be available in the form a generic dynamic

skeleton. When using a dynamic skeleton, an object will have to provide the proper

implementation of the invoke function as offered to the client. We return to object servers

below.

Interface and Implementation Repository

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

To allow the dynamic construction of invocation requests, it is important that a process can

find out during runtime what an interface looks like. CORBA offers an interface repository,

which stores all interface definitions. In many systems, the interface repository is

implemented by means of a separate process offering a standard interface to store and

retrieve interface definitions. An interface repository can also be viewed as that part of

CORBA that assists in runtime type checking facilities.

Whenever an interface definition is compiled, the IDL compiler assigns a repository

identifier to that interface. This repository ID is the basic means to retrieve an interface

definition from the repository. The identifier is by default derived from the name of the

interface and its methods, implying that no guarantees are given with respect to its

uniqueness. If uniqueness is required, the default can be overridden. Given that all interface

definitions stored in an interface repository adhere to IDL syntax, it becomes possible to

organize each definition in a standard way. (In database terminology, this means that the

conceptual schema associated with an interface repository is the same for every

repository.) As a consequence, the interface repositories in CORBA systems offer the same

operations for navigating through interface definitions.

Besides an interface repository, a CORBA system generally offers also an implementation

repository. Conceptually, an implementation repository contains all that is needed to

implement and activate objects. Because such functionality is intimately related to the ORB

itself and the underlying operating system, it is difficult to provide a standard

implementation. An implementation repository is also tightly coupled to the organization

and implementation of object servers. An object adapter has the responsibility for

activating an object by ensuring that it is running in the address space of a server so that its

methods can be invoked. Given an object reference, an adapter could contact the

implementation repository to find out exactly what needs to be done.

For example, the implementation repository could maintain a table specifying that a new

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

server should be started and also to which port number the new server should be listening

for the specified object. The repository would furthermore have information about which

executable file the server should load and execute. Alternatively, it may not be necessary to

start a separate server, but the current one need merely link to a specific library containing

the requested method or object. Again, such information would typically be stored in an

implementation repository. These two examples illustrate that such a repository is indeed

closely tied to an ORB and the platform on which it is running.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

UNIT -05/LECTURE- 07

CORBA Services ([RGPV/June 2013(5), ([RGPV/June 2014(5)]

An important part of CORBA is reference model is formed by the collection of CORBA

services. A CORBA service is best thought of as being general purpose and independent of

the application for which CORBA is being used. As such, CORBA services strongly resemble

the types of services commonly provided by operating systems. There is a whole list of

services specified for CORBA. Unfortunately, it is not always possible to draw a clear line

between the different services, as they often have overlapping functionality. Let us briefly

describe each service so that we can later make a better comparison to services as offered

by DCOM and Globe.

The collection service provides the means to group objects into lists, queues, stacks, sets,

and so on. Depending on the nature of the group, various access mechanisms are offered.

For example, lists can be inspected element wise through what is generally referred to as an

iterate. There are also facilities to select objects by specifying a key value. In a sense, the

collection service comes close to what is generally offered by class libraries for object-

oriented programming languages.

There is also a separate query service that provides the means to construct collections of

objects that can be queried using a declarative query language. A query may return a

reference to an object or to a collection of objects. The query service augments the

collection service with advanced queries. It differs from the collection service in that the

latter offers various types of collections. There is also a concurrency control service. It offers

advanced locking mechanisms by which clients can access shared objects. This service can

be used to implement transactions, which are offered by a separate service. The transaction

service allows a client to define a series of method invocations across multiple objects in a

single transaction. The service supports flat and nested transactions.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

Normally, clients invoke methods on objects and wait for the result of that invocation. To

support asynchronous communication, CORBA supports an event Service by which clients

and objects can be interrupted upon the occurrence of a specified event. Advanced facilities

for asynchronous communication are provided by a separate notification service We

describe these services in more detail below.

Externalization deals with marshalling objects in such a way that they can be stored on disk

or sent across a network. It is comparable to the serialization facilities offered by Java,

allowing objects to be written to a data stream as a series of bytes.

The life cycle service provides the means to create, destroy, copy, and move objects. A key

concept is that of a factory object , which is a special object used to create other objects

.Practice indicates that only the creation of objects needs to be handled by a separate

service. However, destroying, copying, and moving objects is often conveniently defined by

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

objects themselves. The reason is that these operations often affect an object͛s state in an

object specific way. The licensing service allows developers of objects to attach a license to

their object and enforce a specific licensing policy. A license expresses the rights a client has

with respect to using an object. For example, a license attached to an object may enforce

that the object can be used by only a single client at a time.

Another license may ensure that an object is automatically disabled after a certain

expiration time. CORBA offers a separate naming service by which objects can be given a

human-readable name that maps to the object͛s identifier. The basic facility for describing

objects is provided by a separate property service. This service allows clients to associate

(attribute, value) pairs with objects. Note that these attributes are not part of the object͛s

state, but instead are used to describe the object.

In other words, they provide information about the object instead of being part of it.

Related to these two services is a trading service that allows objects to advertise what they

have to offer (by means of their interfaces), and to allow clients to find services using a

special language that supports the description of constraints. A separate persistence service

offers the facilities for storing information on disk in the form of storage objects. An

important issue here is that persistence transparency is provided; a client need not explicitly

transfer the data in a storage object between a disk and available main memory.

None of the services so far offer the facilities to explicitly relate two or more objects. These

facilities are provided by a relationship service, which essentially provides support for

organizing objects according to a conceptual schema like the ones used in databases.

Security is provided in a security service. The implementation of this service is comparable

to security systems such as SESAME and Kerberos. The CORBA security service provides

facilities for authentication, authorization, auditing, secure communication, no repudiation,

and administration.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

Finally, CORBA offers a time service that returns the current time within specified error

ranges.

The CORBA services have been designed with CORBA͛s object model as their basis. This

means that all services are specified in CORBA IDL, and that a separation between interface

specification and implementation is made. Another important design principle is that

services should be minimal and simple. In the following sections we discuss a number of

these services in more detail. From those descriptions, it can be argued to what extent this

last principle has been successfully applied.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Write short note on (i) CORBA

Services.

June 2013,June

2014

5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

UNIT -05/LECTURE- 08

Introduction to Wave & traversal algorithms

In the design of distributed algorithms for various applications several very general

problems for process networks appear frequently as subtasks. These elementary tasks

include the broadcasting of information (e.g., a start or terminate message), achieving a

global synchronization between processes, triggering the execution of some event in each

process, or computing a function of which each process holds part of the input. These tasks

are always performed by passing messages according to some prescribed, topology-

dependent scheme that ensures the participation of all processes. Indeed, as will become

more evident to the reader in later chapters, these tasks are so fundamental that solutions

to more complicated problems such as election , termination detection , or mutual

exclusion can be given in which communication between processes occurs only via these

message passing schemes.

The importance of message-passing schemes, called wave algorithms from now on, justifies

a separate treatment of them in isolation from a particular application algorithm in which

the schemes can be embedded. This chapter formally defines wave algorithms)and proves

some general results about them . The observation that the same algorithms can be used

for all of the fundamental tasks listed above, i.e., broadcasting, synchronization, and

computing global functions, will be made rigorous

The treatment of wave algorithms as a separate issue, even though they are usually

employed as subroutines in more involved algorithms, is useful for two reasons. First, the

introduction of the concept facilitates the later treatment of more involved algorithms

because the properties of their subroutines have already been studied. Second, certain

problems in distributed computing can be solved by generic constructions that yield a

specific algorithm when parameterized with a specific wave algorithm. The same

construction can then be used to give algorithms for different network topologies or for

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

different assumptions about the initial knowledge of processes.

Definition and Use of Wave Algorithms

Unless stated otherwise, it is assumed throughout in this chapter that the network topology

is fixed (no topological changes occur), undirected (each channel carries messages in both

directions), and connected (there is a path between any two processes). The set of all

processes is denoted by , and the set of channels by E. As in earlier chapters, it is assumed

that the system uses asynchronous message passing and that there is no notion of global

time or real-time clocks. The algorithms of this chapter can also be used with synchronous

message passing (possibly with some small modifications to avoid deadlocks) or with global

clocks if these are available. However, some of the more general theorems are not true in

these cases

Definition of Wave Algorithms

A distributed algorithm usually allows a large collection of possible computations, due to

non-determinism in the processes as well as the communication subsystem. A computation

is a collection of events, partially ordered by the causal precedence relation as defined

following. The number of events of computation C is denoted |C| and the subset of the

events that occur in process p is denoted Cp. It is assumed that there is a special type of

internal event called a decide event; in the algorithms in this chapter such an event is simply

represented by the statement decide. A wave algorithm exchanges a finite number of

messages and then makes a decision, which depends causally on some event in each

process.

Definition 6.1 A wave algorithm is a distributed algorithm that satisfies the following three

requirements.

(1) Termination. Each computation is finite

we dont take any liability for the notes correctness. http://www.rgpvonline.com

33

 (2) Decision. Each computation contains at least one decide event

 (3) Dependence. In each computation each decide event is causally preceded by an event

in each process

A computation of a wave algorithm is called a wave. As an additional notation, in a

computation of an algorithm a distinction is made between initiators, also called starters,

and non-initiators, also called followers. A process is an initiator if it starts the execution of

its local algorithm spontaneously, i.e., triggered by some condition internal to the process. A

non-initiator becomes involved in the algorithm only when a message of the algorithm

arrives and triggers the execution of the process algorithm. The first event of an initiator is

an internal or send event, the first event of a non-initiator is a receive event.

A variety of wave algorithms exists because algorithms may differ in many respects. As a

rationale for the treatment of a large number of algorithms in this chapter and as an aid in

selecting one algorithm for a particular purpose a list of aspects in which wave algorithms

differ from each other is given here

(1) Centralization. An algorithm is called centralized if there must be exactly one initiator in

each computation, and decentralized if the algorithm can be started spontaneously by an

arbitrary subset of the processes. Centralized algorithms are also called single-source

algorithms, and decentralized algorithms are called multi-source algorithms. Centralization

has an important influence on the complexity of wave algorithms.

 (2) Topology. An algorithm may be designed for a specific topology, such as a ring, tree,

clique, etc.

(3) Initial Knowledge. An algorithm may assume the availability of various types of initial

knowledge in the processes Examples of pre required knowledge include the following:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

34

(a) Process identity. Each process initially knows its own unique name.

(b) Neighbour͛s identities. Each process initially knows the names of its neighbours.

(c) Sense of direction.

(4) Number of Decisions. In all wave algorithms in this chapter at most one decision occurs

in each process. The number of processes that execute a decide event may vary; in some

algorithms only one process decides, in others all processes decide. The tree algorithm

causes a decision in exactly two processes.

(5) Complexity. The complexity measures considered in this chapter are the number of

exchanged messages, the number of exchanged bits, and the time needed for one

computation.

Each wave algorithm in this chapter will be given with the variables it uses and, if necessary,

the information exchanged in its messages. Most of these algorithms send ͞empty

messages͟, without any actual information: the messages carry causality, not information.

When a wave algorithm is applied there are generally more variables and other information

may be included in the message. Many applications rely on the simultaneous or sequential

propagation of several waves; in this case information about the wave to which a message

belongs must be included in messages. Also a process may keep additional variables to

administer the wave or waves in which it is currently active.

An important subclass of wave algorithm is formed by centralized wave algorithms having

the following two additional properties: the initiator is the only process that decides; all

events are ordered totally by the causal order. Wave algorithms with these properties are

called traversal algorithms

we dont take any liability for the notes correctness. http://www.rgpvonline.com

35

UNIT- 05/LECTURE -09

A Collection of Wave Algorithms

A collection of wave and traversal algorithms will be presented in the next three sections. In

all cases the algorithm text is given for the process p.

The Ring Algorithm

In this subsection a wave algorithm for a ring network will be given. The same algorithm can

be used for Hamiltonian networks in which one fixed Hamiltonian cycle is encoded in the

processes. Assume that for each process p a dedicated neighbour Nextp is given such that all

channels selected in this way form a Hamiltonian cycle.

The algorithm is centralized; the initiator sends a message ۃ tok ۄ (called the token) along

the cycle, each process passes it on, and when it returns to the initiator the initiator decides

Theorem The ring algorithm is a wave algorithm.

Proof. Call the initiator p0. As each process sends at most one message the algorithm

exchanges at most N messages altogether.

Within a finite number of steps the algorithm reaches a terminal configuration. In this

configuration p0 has already sent the token, i.e., has passed the send statement in its

program. Furthermore, no ۃtokۄ message is in transit in any channel, otherwise it could be

received and the configuration would not be terminal. Also no process other then p0

͞holds͟ the token (i.e., has received, but not sent ۃtokۄ), otherwise this process could send ۃtokۄ and the configuration is not terminal. Concluding, (1) p0 has sent the token, (2) for

each p that has sent the token, Nextp has received the token, and (3) for each p ≠ p0 that

we dont take any liability for the notes correctness. http://www.rgpvonline.com

36

has received the token, p has sent the token. From this and the property of Next it follows

that each process has sent and received the token. As p0 has received the token and the

configuration is terminal, P0 has executed the decide statement.

The receipt and sending of ۃtokۄ by each process p ≠ p0 precedes the receipt by p0, hence

the dependence condition is satisfied.

The Tree Algorithm

The same algorithm can be used in an arbitrary network if a spanning tree of the network is

available. It is assumed that all leaves of the tree initiate the algorithm. Each process sends

exactly one message in the algorithm. If a process has received a message via each of its

incident channels except one (this condition is initially true for leaves), the process sends a

message via the remaining channel. If a process has received a message via all of its incident

channels it decides.

The Echo Algorithm

The echo algorithm is a centralized wave algorithm for networks of arbitrary topology. It

was first presented in isolation by Chang and therefore sometimes called Chang͛s echo

algorithm. A slightly more efficient version was given by Segall and this version is presented

here.

The algorithm floods ۃtokۄ messages to all processes, thus defining a spanning. Tokens are

͞echoed͟ back via the edges of this tree very much like the flow of messages in the tree

algorithm.. The initiator sends messages to all its neighbours. Upon receipt of the first

message a non-initiator forwards message to all its neighbours except the one from which

the message was received; when a non-initiator has received messages from all its

neighbours an echo is sent to the father. When the initiator has received a message from all

its neighbours it decides.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

37

The Polling Algorithm

In clique networks a channel exists between each pair of processes. A process can decide if

it has received a message from each neighbour. In the polling algorithm the initiator asks

each neighbour to reply with a message, and decides after receipt of all messages.

Theorem The polling algorithm is a wave algorithm.

Proof. The algorithm sends two messages via each channel that is incident to the initiator.

Each neighbour of the initiator replies once to the original poll, hence the initiator receives

N – 1 replies. This is exactly the number it needs to decide, which implies that the initiator

will decide, and that its decision is preceded by an event in each process.

Polling can also be used in a star network in which the initiator is the centre.

REFERENCES

BOOK AUTHOR

PRIORITY

Distributed

operating systems;

Concepts and

design P K Sinha

1

Distributed

systems: Principles

and paradigms Tanenbaum and Steen

2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

