
1

Unit 2

Topic: Window Fundamentals

Unit 2/Lecture 1

Window Fundamentals

In this Unit, you will learn how to create and manage windows, manage fonts, output text, and

utilize graphics. It also describes the various controls, such as scroll bars and push buttons,

supported by the AWT. It also explains further aspects of Java’s event handling mechanism. This

unit also examines the AWT’s imaging subsystem and animation. Although a common use of

the AWT is in applets, it is also used to create stand-alone windows that run in a GUI

environment, such as Windows. For the sake of convenience, most of the examples in unit

chapter are contained in applets. To run them, you need to use an applet viewer or a Java-

compatible web browser. A few examples will demonstrate the creation of stand-alone,

windowed programs.

AWT Classes[RGPV Dec 2014(3)]

The AWT classes are contained in the java.awt package. It is one of Java’s largest packages.

Fortunately, because it is logically organized in a top-down, hierarchical fashion, it is easier to

understand and use than you might at first believe. Table 23-1 lists some of the many AWT

classes.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

Window Fundamentals

The AWT defines windows according to a class hierarchy that adds functionality and specificity

with each level. The two most common windows are those derived from Panel, which is used

by applets, and those derived from Frame, which creates a standard application window. Much

of the functionality of these windows is derived from their parent classes. Thus, a description of

the class hierarchies relating to these two classes is fundamental to their understanding. Figure

23-1 shows the class hierarchy for Panel and Frame. Let’s look at each of these classes now.

Component[RGPV Dec 2014(3)]

At the top of the AWT hierarchy is the Component class. Component is an abstract class that

encapsulates all of the attributes of a visual component. All user interface elements such as,

buttons, check boxes, pop-up menus, text fields etc., which are displayed on the screen and

that interact with the user are subclasses of Component. It defines over a hundred public

methods that are responsible for managing events, such as mouse and keyboard input,

positioning and sizing the window, and repainting. A Component object is responsible for

remembering the current foreground and background colors and the currently selected text

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

font.

Container[RGPV Dec 2014(3)]

The Container class is a subclass of Component. It has additional methods that allow other

Component objects to be nested within it. Other Container objects can be stored inside of a

Container (since they are themselves instances of Component). This makes for a multileveled

containment system. A container is responsible for laying out (that is, positioning) any

components that it contains. It includes Applet Window, panels, dialog boxes, frames etc.

Panel

The Panel class is a concrete subclass of Container. It doesn’t add any new methods; it simply

implements Container. A Panel may be thought of as a recursively nestable, concrete screen

component. Panel is the superclass for Applet. When screen output is directed to an applet, it

is drawn on the surface of a Panel object. In essence, a Panel is a window that does not contain

a title bar, menu bar, or border. This is why you don’t see these items when an applet is run

inside a browser. When you run an applet using an applet viewer, the applet viewer provides

the title and border. Other components can be added to a Panel object by its add() method

(inherited from Container). Once these components have been added, you can position and

resize them manually using the setLocation(), setSize(), setPreferredSize(), or setBounds()

methods defined by Component.

Window

TheWindow class creates a top-level window. Atop-level window is not contained within any

other object; it sits directly on the desktop. Generally, you won’t create Window objects

directly. Instead, you will use a subclass of Window called Frame, described next.

Frame

Frame encapsulates what is commonly thought of as a window. It is a subclass ofWindow and

has a title bar, menu bar, borders, and resizing corners. If you create a Frame object from

within an applet, it will contain a warning message, such as Java Applet Window, to the user

that an applet window has been created. This message warns users that the window they see

was started by an applet and not by software running on their computer. (An applet that could

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

masquerade as a host-based application could be used to obtain passwords and other sensitive

information without the user’s knowledge.) When a Frame window is created by a stand-alone

application rather than an applet, a normal window is created.

Canvas

Although it is not part of the hierarchy for applet or frame windows, there is one other type of

window that you will find valuable: Canvas. Canvas encapsulates a blank window upon which

you can draw.

S.NO RGPV QUESTIONS YEAR MARKS

Q.1 What is AWT. Differentiate between

component class & container class.

Dec 2014 3

Q.2 Explain in Brief container and

Components in AWT Package.

DEC 2009 10

Q.3 Using AWT classes, Create a Closable

Window to receive the following

inputs, i.e, username, sex,

qualification, address with submit and

reset button

DEC 2009 12

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

Unit 2

Topic: Working with Frame Windows

Unit 2/Lecture 2

Working with Frame Windows

After the applet, the type of window you will most often create is derived from Frame. You will

use it to create child windows within applets, and top-level or child windows for stand-alone

applications. As mentioned, it creates a standard-style window.

Here are two of Frame’s constructors:

Frame()

Frame(String title)

The first form creates a standard window that does not contain a title. The second form creates

a window with the title specified by title. Notice that you cannot specify the dimensions of the

window. Instead, you must set the size of the window after it has been created.

Creating a Frame Window in an Applet

Creating a new frame window from within an applet is actually quite easy. First, create a

subclass of Frame. Next, override any of the standard applet methods, such as init(), start(),

and stop(), to show or hide the frame as needed. Finally, implement the windowClosing()

method of the WindowListener interface, calling setVisible(false) when the window is closed.

Once you have defined a Frame subclass, you can create an object of that class. This causes a

frame window to come into existence, but it will not be initially visible. You make it visible by

calling setVisible(). When created, the window is given a default height and width.

You can set the size of the window explicitly by calling the setSize() method. The following

applet creates a subclass of Frame called SampleFrame. A window of this subclass is

instantiated within the init() method of AppletFrame. Notice that SampleFrame calls Frame’s

constructor. This causes a standard frame window to be created with the title passed in title.

This example overrides the applet’s start() and stop() methods so that they show and hide the

child window, respectively. This causes the window to be removed automatically when you

terminate the applet, when you close the window, or, if using a browser, when you move to

another page. It also causes the child window to be shown when the browser returns to the

applet.

// Create a child frame window from within an applet.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="AppletFrame" width=300 height=50>

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame {

SampleFrame(String title) {

super(title);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

public void paint(Graphics g) {

g.drawString("This is in frame window", 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Create frame window.

public class AppletFrame extends Applet {

Frame f;

public void init() {

f = new SampleFrame("A Frame Window");

f.setSize(250, 250);

f.setVisible(true);

}

public void start() {

f.setVisible(true);

}

public void stop() {

f.setVisible(false);

}

public void paint(Graphics g) {

g.drawString("This is in applet window", 10, 20);

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

Sample output from this program is shown here.

S.NO RGPV QUESTIONS YEAR MARKS

Q.1 Explain the life cycle of applet. Dec 2014 2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

Unit 2

Topic: Handling Events in Frame Window

Unit 2/Lecture 3

Handling Events in a Frame Window[RGPV Dec 2014(2)]

Since Frame is a subclass of Component, it inherits all the capabilities defined by Component.

This means that you can use and manage a frame window just like you manage an applet’s

main window. For example, you can override paint() to display output, call repaint() when you

need to restore the window, and add event handlers. Whenever an event occurs in a window,

the event handlers defined by that window will be called. Each window handles its own events.

For example, the following program creates a window that responds to mouse events. The

main applet window also responds to mouse events. When you experiment with this program,

you will see that mouse events are sent to the window in which the event occurs.

// Handle mouse events in both child and applet windows.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="WindowEvents" width=300 height=50>

</applet>

*/

// Create a subclass of Frame.

class SampleFrame extends Frame

implements MouseListener, MouseMotionListener {

String msg = "";

int mouseX=10, mouseY=40;

int movX=0, movY=0;

SampleFrame(String title) {

super(title);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

// create an object to handle window events

MyWindowAdapter adapter = new MyWindowAdapter(this);

// register it to receive those events

addWindowListener(adapter);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent evtObj) {

// save coordinates

mouseX = 10;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

mouseY = 54;

msg = "Mouse just entered child.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent evtObj) {

// save coordinates

mouseX = 10;

mouseY = 54;

msg = "Mouse just left child window.";

repaint();

}

// Handle mouse pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle mouse released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// save coordinates

movX = me.getX();

movY = me.getY();

repaint(0, 0, 100, 60);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

}

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 10, 40);

}

}

class MyWindowAdapter extends WindowAdapter {

SampleFrame sampleFrame;

public MyWindowAdapter(SampleFrame sampleFrame) {

this.sampleFrame = sampleFrame;

}

public void windowClosing(WindowEvent we) {

sampleFrame.setVisible(false);

}

}

// Applet window.

public class WindowEvents extends Applet

implements MouseListener, MouseMotionListener {

SampleFrame f;

String msg = "";

int mouseX=0, mouseY=10;

int movX=0, movY=0;

// Create a frame window.

public void init() {

f = new SampleFrame("Handle Mouse Events");

f.setSize(300, 200);

f.setVisible(true);

// register this object to receive its own mouse events

addMouseListener(this);

addMouseMotionListener(this);

}

// Remove frame window when stopping applet.

public void stop() {

f.setVisible(false);

}

// Show frame window when starting applet.

public void start() {

f.setVisible(true);

}

// Handle mouse clicked.

public void mouseClicked(MouseEvent me) {

}

// Handle mouse entered.

public void mouseEntered(MouseEvent me) {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just entered applet window.";

repaint();

}

// Handle mouse exited.

public void mouseExited(MouseEvent me) {

// save coordinates

mouseX = 0;

mouseY = 24;

msg = "Mouse just left applet window.";

repaint();

}

// Handle button pressed.

public void mousePressed(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Down";

repaint();

}

// Handle button released.

public void mouseReleased(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

msg = "Up";

repaint();

}

// Handle mouse dragged.

public void mouseDragged(MouseEvent me) {

// save coordinates

mouseX = me.getX();

mouseY = me.getY();

movX = me.getX();

movY = me.getY();

msg = "*";

repaint();

}

// Handle mouse moved.

public void mouseMoved(MouseEvent me) {

// save coordinates

movX = me.getX();

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

movY = me.getY();

repaint(0, 0, 100, 20);

}

// Display msg in applet window.

public void paint(Graphics g) {

g.drawString(msg, mouseX, mouseY);

g.drawString("Mouse at " + movX + ", " + movY, 0, 10);

}

}

Sample output from this program is shown here:

S.NO RGPV QUESTIONS YEAR MARKS

Q.1 What is an event in java Dec 2014 2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

Unit 2

Topic: AWT Controls

Unit 2/Lecture 4

AWT Controls

Controls are components that allow a user to interact with your application in various ways—
for example, a commonly used control is the push button. A layout manager automatically

positions components within a container. Thus, the appearance of a window is determined by a

combination of the controls that it contains and the layout manager used to position them.

The AWT supports the following types of control.

 Lables

 Push Buttons

 Check Boxes

 Choice Lists

 Lists

 Scroll Bars

 Text Editing

Adding and Removing Controls

To include a control in a window, you must add it to the window. To do this, you must first

create an instance of the desired control and then add it to a window by calling add(), which is

defined by Container. The add() method has several forms. The following form is the one that

is used for the first part of this chapter:

Component add(Component compObj)

Here, compObj is an instance of the control that you want to add. A reference to compObj is

returned. Once a control has been added, it will automatically be visible whenever its parent

window is displayed. Sometimes you will want to remove a control from a window when the

control is no longer needed. To do this, call remove(). This method is also defined by

Container. It has this general form:

void remove(Component obj)

Here, obj is a reference to the control you want to remove. You can remove all controls by

calling removeAll().

Label

The easiest control to use is a label. A label is an object of type Label, and it contains a string,

which it displays. Labels are passive controls that do not support any interaction with the user.

Label defines the following constructors:

Label() throws HeadlessException

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Label(String str) throws HeadlessException

Label(String str, int how) throws HeadlessException

The first version creates a blank label. The second version creates a label that contains the

string specified by str. This string is left-justified. The third version creates a label that contains

the string specified by str using the alignment specified by how. The value of how must be one

of these three constants: Label.LEFT, Label.RIGHT, or Label.CENTER. You can set or change the

text in a label by using the setText() method. You can obtain the current label by calling

getText(). These methods are shown here:

void setText(String str)

String getText()

For setText(), str specifies the new label. For getText(), the current label is returned. You can

set the alignment of the string within the label by calling setAlignment(). To obtain the current

alignment, call getAlignment(). The methods are as follows:

void setAlignment(int how)

int getAlignment()

// Demonstrate Labels

import java.awt.*;

import java.applet.*;

/*

<applet code="LabelDemo" width=300 height=200>

</applet>

*/

public class LabelDemo extends Applet {

public void init() {

Label one = new Label("One");

Label two = new Label("Two");

Label three = new Label("Three");

// add labels to applet window

add(one);

add(two);

add(three);

}}

Using Button

Perhaps the most widely used control is the push button. A push button is a component that

contains a label and that generates an event when it is pressed. Push buttons are objects of

type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

The first version creates an empty button. The second creates a button that contains str as a

label. After a button has been created, you can set its label by calling setLabel(). You can

retrieve its label by calling getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

Handling Buttons

Perhaps the most widely used control is the push button. A push button is a component that

contains a label and that generates an event when it is pressed. Push buttons are objects of

type Button. Button defines these two constructors:

Button() throws HeadlessException

Button(String str) throws HeadlessException

The first version creates an empty button. The second creates a button that contains str as a

label. After a button has been created, you can set its label by calling setLabel(). You can

retrieve its label by calling

getLabel(). These methods are as follows:

void setLabel(String str)

String getLabel()

Here, str becomes the new label for the button.

// Demonstrate Buttons

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ButtonDemo" width=250 height=150>

</applet>

*/

public class ButtonDemo extends Applet implements ActionListener {

String msg = "";

Button yes, no, maybe;

public void init() {

yes = new Button("Yes");

no = new Button("No");

maybe = new Button("Undecided");

add(yes);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

add(no);

add(maybe);

yes.addActionListener(this);

no.addActionListener(this);

maybe.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

String str = ae.getActionCommand();

if(str.equals("Yes")) {

msg = "You pressed Yes.";

}

else if(str.equals("No")) {

msg = "You pressed No.";

}

else {

msg = "You pressed Undecided.";

}

repaint();

}

public void paint(Graphics g) {

g.drawString(msg, 6, 100);

}

}

As mentioned, in addition to comparing button action command strings, you can also

determine which button has been pressed, by comparing the object obtained from the

getSource() method to the button objects that you added to the window. To do this, you must

keep a list of the objects when they are added. The following applet shows this approach:

// Recognize Button objects.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

<applet code="ButtonList" width=250 height=150>

</applet>

*/

public class ButtonList extends Applet implements ActionListener {

String msg = "";

Button bList[] = new Button[3];

public void init() {

Button yes = new Button("Yes");

Button no = new Button("No");

Button maybe = new Button("Undecided");

// store references to buttons as added

bList[0] = (Button) add(yes);

bList[1] = (Button) add(no);

bList[2] = (Button) add(maybe);

// register to receive action events

for(int i = 0; i < 3; i++) {

bList[i].addActionListener(this);

}

}

public void actionPerformed(ActionEvent ae) {

for(int i = 0; i < 3; i++) {

if(ae.getSource() == bList[i]) {

msg = "You pressed " + bList[i].getLabel();

}

}

repaint();

}

public void paint(Graphics g) {

g.drawString(msg, 6, 100);

}

}

In this version, the program stores each button reference in an array when the buttons are

added to the applet window. (Recall that the add() method returns a reference to the button

when it is added.) Inside actionPerformed(), this array is then used to determine which button

has been pressed.

S.NO RGPV QUESTION YEAR MARKS

Q.1 What do you mean by AWT controls?

What are the various controls

supported by AWT?

DEC 2012 8

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

Unit 2

Topic: Checkbox and Checkboxgroup Controls

Unit 2/Lecture 5

Applying Checkboxes

A check box is a control that is used to turn an option on or off. It consists of a small box that

can either contain a check mark or not. There is a label associated with each check box that

describes what option the box represents. You change the state of a check box by clicking on it.

Check boxes can be used individually or as part of a group. Check boxes are objects of the

Checkbox class.

Checkbox supports these constructors:

Checkbox() throws HeadlessException

Checkbox(String str) throws HeadlessException

Checkbox(String str, boolean on) throws HeadlessException

Checkbox(String str, boolean on, CheckboxGroup cbGroup) throws HeadlessException

Checkbox(String str, CheckboxGroup cbGroup, boolean on) throws HeadlessException

The first form creates a check box whose label is initially blank. The state of the check box is

unchecked. The second form creates a check box whose label is specified by str. The state of

the check box is unchecked. The third form allows you to set the initial state of the check box. If

on is true, the check box is initially checked; otherwise, it is cleared. The fourth and fifth forms

create a check box whose label is specified by str and whose group is specified by cbGroup. If

this check box is not part of a group, then cbGroup must be null. (Check box groups are

described in the next section.) The value of on determines the initial state of the check box. To

retrieve the current state of a check box, call getState(). To set its state, call setState(). You

can obtain the current label associated with a check box by calling getLabel(). To set the label,

call setLabel(). These methods are as follows:

boolean getState()

void setState(boolean on)

String getLabel()

void setLabel(String str)

Here, if on is true, the box is checked. If it is false, the box is cleared. The string passed in str

becomes the new label associated with the invoking check box.

The following program creates four check boxes. The initial state of the first box is checked. The

status of each check box is displayed. Each time you change the state of a check box, the status

display is updated.

// Demonstrate check boxes.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

<applet code="CheckboxDemo" width=250 height=200>

</applet>

*/

public class CheckboxDemo extends Applet implements ItemListener {

String msg = "";

Checkbox winXP, winVista, solaris, mac;

public void init() {

winXP = new Checkbox("Windows XP", null, true);

winVista = new Checkbox("Windows Vista");

solaris = new Checkbox("Solaris");

mac = new Checkbox("Mac OS");

add(winXP);

add(winVista);

add(solaris);

add(mac);

winXP.addItemListener(this);

winVista.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows XP: " + winXP.getState();

g.drawString(msg, 6, 100);

msg = " Windows Vista: " + winVista.getState();

g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140);

msg = " Mac OS: " + mac.getState();

g.drawString(msg, 6, 160);

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

CheckboxGroup

It is possible to create a set of mutually exclusive check boxes in which one and only one check

box in the group can be checked at any one time. These check boxes are often called radio

buttons, because they act like the station selector on a car radio—only one station can be

selected at any one time. To create a set of mutually exclusive check boxes, you must first

define the group to which they will belong and then specify that group when you construct the

check boxes. Check box groups are objects of type CheckboxGroup. Only the default

constructor is defined, which creates an empty group.

You can determine which check box in a group is currently selected by calling

getSelectedCheckbox(). You can set a check box by calling setSelectedCheckbox().

These methods are as follows:

Checkbox getSelectedCheckbox()

void setSelectedCheckbox(Checkbox which)

Here, which is the check box that you want to be selected. The previously selected check box

will be turned off. Here is a program that uses check boxes that are part of a group:

// Demonstrate check box group.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CBGroup" width=250 height=200>

</applet>

*/

public class CBGroup extends Applet implements ItemListener {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

String msg = "";

Checkbox winXP, winVista, solaris, mac;

CheckboxGroup cbg;

public void init() {

cbg = new CheckboxGroup();

winXP = new Checkbox("Windows XP", cbg, true);

winVista = new Checkbox("Windows Vista", cbg, false);

solaris = new Checkbox("Solaris", cbg, false);

mac = new Checkbox("Mac OS", cbg, false);

add(winXP);

add(winVista);

add(solaris);

add(mac);

winXP.addItemListener(this);

winVista.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current selection: ";

msg += cbg.getSelectedCheckbox().getLabel();

g.drawString(msg, 6, 100); } }

Choice Controls

The Choice class is used to create a pop-up list of items from which the user may choose. Thus,

a Choice control is a form of menu. When inactive, a Choice component takes up only enough

space to show the currently selected item. When the user clicks on it, the whole list of choices

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

pops up, and a new selection can be made. Each item in the list is a string that appears as a left-

justified label in the order it is added to the Choice object. Choice only defines the default

constructor, which creates an empty list. To add a selection to the list, call add(). It has this

general form:

void add(String name)

Here, name is the name of the item being added. Items are added to the list in the order in

which calls to add() occur.

To determine which item is currently selected, you may call either getSelectedItem() or

getSelectedIndex().

These methods are shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item.

getSelectedIndex() returns the index of the item. The first item is at index 0. By default,

the first item added to the list is selected.

To obtain the number of items in the list, call getItemCount(). You can set the currently

selected item using the select() method with either a zero-based integer index or a string that

will match a name in the list. These methods are shown here:

int getItemCount()

void select(int index)

void select(String name)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling ChoiceList

Each time a choice is selected, an item event is generated. This is sent to any listeners that

previously registered an interest in receiving item event notifications from that component.

Each listener implements the ItemListener interface. That interface defines the

itemStateChanged() method. An ItemEvent object is supplied as the argument to this method.

Here is an example that creates two Choice menus. One selects the operating system. The

other selects the browser.

// Demonstrate Choice lists.

import java.awt.*;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ChoiceDemo" width=300 height=180>

</applet>

*/

public class ChoiceDemo extends Applet implements ItemListener {

Choice os, browser;

String msg = "";

public void init() {

os = new Choice();

browser = new Choice();

// add items to os list

os.add("Windows XP");

os.add("Windows Vista");

os.add("Solaris");

os.add("Mac OS");

// add items to browser list

browser.add("Internet Explorer");

browser.add("Firefox");

browser.add("Opera");

// add choice lists to window

add(os);

add(browser);

// register to receive item events

os.addItemListener(this);

browser.addItemListener(this);

}

public void itemStateChanged(ItemEvent ie) {

repaint();

}

// Display current selections.

public void paint(Graphics g) {

msg = "Current OS: ";

msg += os.getSelectedItem();

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

Unit 2

Topic: Lists & Scrollbar Controls

Unit 2/Lecture 6

Using Lists

The List class provides a compact, multiple-choice, scrolling selection list. Unlike the Choice

object, which shows only the single selected item in the menu, a List object can be constructed

to show any number of choices in the visible window. It can also be created to allow multiple

selections. List provides these constructors:

List() throws HeadlessException

List(int numRows) throws HeadlessException

List(int numRows, boolean multipleSelect) throws HeadlessException

The first version creates a List control that allows only one item to be selected at any one time.

In the second form, the value of numRows specifies the number of entries in the list that will

always be visible (others can be scrolled into view as needed). In the third form, if

multipleSelect is true, then the user may select two or more items at a time. If it is false, then

only one item may be selected.

To add a selection to the list, call add(). It has the following two forms:

void add(String name)

void add(String name, int index)

Here, name is the name of the item added to the list. The first form adds items to the end of

the list. The second form adds the item at the index specified by index. Indexing begins at zero.

You can specify –1 to add the item to the end of the list. For lists that allow only single

selection, you can determine which item is currently

selected by calling either getSelectedItem() or getSelectedIndex(). These methods are

shown here:

String getSelectedItem()

int getSelectedIndex()

The getSelectedItem() method returns a string containing the name of the item. If more than

one item is selected, or if no selection has yet been made, null is returned.

The getSelectedIndex() returns the index of the item. The first item is at index 0. If more than

one item is selected, or if no selection has yet been made, –1 is returned.

For lists that allow multiple selection, you must use either getSelectedItems() or

getSelectedIndexes(), shown here, to determine the current selections:

String[] getSelectedItems()

int[] getSelectedIndexes()

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

getSelectedItems() returns an array containing the names of the currently selected items.

getSelectedIndexes() returns an array containing the indexes of the currently selected items.

To obtain the number of items in the list, call getItemCount(). You can set the currently

selected item by using the select() method with a zero-based integer index. These methods

are shown here:

int getItemCount()

void select(int index)

Given an index, you can obtain the name associated with the item at that index by calling

getItem(), which has this general form:

String getItem(int index)

Here, index specifies the index of the desired item.

Handling Lists

To process list events, you will need to implement the ActionListener interface. Each time a List

item is double-clicked, an ActionEvent object is generated. Its getActionCommand() method

can be used to retrieve the name of the newly selected item. Also, each time an item is selected

or deselected with a single click, an ItemEvent object is generated. Its getStateChange()

method can be used to determine whether a selection or deselection triggered this event.

getItemSelectable() returns a reference to the object that triggered this event. Here is an

example that converts the Choice controls in the preceding section into List components, one

multiple choice and the other single choice:

// Demonstrate Lists.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="ListDemo" width=300 height=180>

</applet>

*/

public class ListDemo extends Applet implements ActionListener {

List os, browser;

String msg = "";

public void init() {

os = new List(4, true);

browser = new List(4, false);

// add items to os list

os.add("Windows XP");

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

os.add("Windows Vista");

os.add("Solaris");

os.add("Mac OS");

// add items to browser list

browser.add("Internet Explorer");

browser.add("Firefox");

browser.add("Opera");

browser.select(1);

// add lists to window

add(os);

add(browser);

// register to receive action events

os.addActionListener(this);

browser.addActionListener(this);

}

public void actionPerformed(ActionEvent ae) {

repaint();

}

// Display current selections.

public void paint(Graphics g) {

int idx[];

msg = "Current OS: ";

idx = os.getSelectedIndexes();

for(int i=0; i<idx.length; i++)

msg += os.getItem(idx[i]) + " ";

g.drawString(msg, 6, 120);

msg = "Current Browser: ";

msg += browser.getSelectedItem();

g.drawString(msg, 6, 140);

}

}

Sample output generated by the ListDemo applet is shown in Figure given below.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

Managing Scroll Bars

Scroll bars are used to select continuous values between a specified minimum and maximum.

Scroll bars may be oriented horizontally or vertically. A scroll bar is actually a composite of

several individual parts. Each end has an arrow that you can click to move the current value of

the scroll bar one unit in the direction of the arrow. The current value of the scroll bar relative

to its minimum and maximum values is indicated by the slider box (or thumb) for the scroll bar.

The slider box can be dragged by the user to a new position. The scroll bar will then reflect this

value. In the background space on either side of the thumb, the user can click to cause the

thumb to jump in that direction by some increment larger than 1. Typically, this action

translates into some form of page up and page down. Scroll bars are encapsulated by the

Scrollbar class.

Scrollbar defines the following constructors:

Scrollbar() throws HeadlessException

Scrollbar(int style) throws HeadlessException

Scrollbar(int style, int initialValue, int thumbSize, int min, int max) throws HeadlessException

The first form creates a vertical scroll bar. The second and third forms allow you to specify the

orientation of the scroll bar. If style is Scrollbar.VERTICAL, a vertical scroll bar is created. If style

is Scrollbar.HORIZONTAL, the scroll bar is horizontal. In the third form of the constructor, the

initial value of the scroll bar is passed in initialValue. The number of units represented by the

height of the thumb is passed in thumbSize. The minimum and maximum values for the scroll

bar are specified by min and max.

If you construct a scroll bar by using one of the first two constructors, then you need to set its

parameters by using setValues(), shown here, before it can be used:

void setValues(int initialValue, int thumbSize, int min, int max)

The parameters have the same meaning as they have in the third constructor just described. To

obtain the current value of the scroll bar, call getValue(). It returns the current setting. To set

the current value, call setValue(). These methods are as follows:

int getValue()

void setValue(int newValue)

Here, newValue specifies the new value for the scroll bar. When you set a value, the slider box

inside the scroll bar will be positioned to reflect the new value. You can also retrieve the

minimum and maximum values via getMinimum() and getMaximum(), shown here:

int getMinimum()

int getMaximum()

They return the requested quantity.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

By default, 1 is the increment added to or subtracted from the scroll bar each time it is scrolled

up or down one line. You can change this increment by calling setUnitIncrement(). By default,

page-up and page-down increments are 10.

You can change this value by calling setBlockIncrement(). These methods are shown here:

void setUnitIncrement(int newIncr)

void setBlockIncrement(int newIncr)

Handling Scroll Bars

To process scroll bar events, you need to implement the AdjustmentListener interface. Each

time a user interacts with a scroll bar, an AdjustmentEvent object is generated. Its

getAdjustmentType() method can be used to determine the type of the adjustment. The types

of adjustment events are as follows:

BLOCK_DECREMENT A page-down event has been generated.

BLOCK_INCREMENT A page-up event has been generated.

TRACK An absolute tracking event has been generated.

UNIT_DECREMENT The line-down button in a scroll bar has been pressed.

UNIT_INCREMENT The line-up button in a scroll bar has been pressed.

The following example creates both a vertical and a horizontal scroll bar. The current

settings of the scroll bars are displayed. If you drag the mouse while inside the window, the

coordinates of each drag event are used to update the scroll bars. An asterisk is displayed at

the current drag position.

// Demonstrate scroll bars.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="SBDemo" width=300 height=200>

</applet>

*/

public class SBDemo extends Applet

implements AdjustmentListener, MouseMotionListener {

String msg = "";

Scrollbar vertSB, horzSB;

public void init() {

int width = Integer.parseInt(getParameter("width"));

int height = Integer.parseInt(getParameter("height"));

vertSB = new Scrollbar(Scrollbar.VERTICAL,

0, 1, 0, height);

horzSB = new Scrollbar(Scrollbar.HORIZONTAL,

0, 1, 0, width);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

add(vertSB);

add(horzSB);

// register to receive adjustment events

vertSB.addAdjustmentListener(this);

horzSB.addAdjustmentListener(this);

addMouseMotionListener(this);

}

public void adjustmentValueChanged(AdjustmentEvent ae) {

repaint();

}

// Update scroll bars to reflect mouse dragging.

public void mouseDragged(MouseEvent me) {

int x = me.getX();

int y = me.getY();

vertSB.setValue(y);

horzSB.setValue(x);

repaint();

}

// Necessary for MouseMotionListener

public void mouseMoved(MouseEvent me) {

}

// Display current value of scroll bars.

public void paint(Graphics g) {

msg = "Vertical: " + vertSB.getValue();

msg += ", Horizontal: " + horzSB.getValue();

g.drawString(msg, 6, 160);

// show current mouse drag position

g.drawString("*", horzSB.getValue(),

vertSB.getValue());

}

}

Sample output from the SBDemo applet is shown in Figure given below.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

Unit 2

Topic: Using a TextField and TextArea

Unit 2/Lecture 7

Using a TextField

The TextField class implements a single-line text-entry area, usually called an edit control. Text

fields allow the user to enter strings and to edit the text using the arrow keys, cut and paste

keys, and mouse selections. TextField is a subclass of TextComponent. TextField defines the

following constructors:

TextField() throws HeadlessException

TextField(int numChars) throws HeadlessException

TextField(String str) throws HeadlessException

TextField(String str, int numChars) throws HeadlessException

The first version creates a default text field. The second form creates a text field that is

numChars characters wide. The third form initializes the text field with the string contained in

str. The fourth form initializes a text field and sets its width.

TextField (and its superclass TextComponent) provides several methods that allow you to

utilize a text field. To obtain the string currently contained in the text field, call getText().

To set the text, call setText(). These methods are as follows:

String getText()

void setText(String str)

Here, str is the new string.

The user can select a portion of the text in a text field. Also, you can select a portion of text

under program control by using select(). Your program can obtain the currently selected text

by calling getSelectedText(). These methods are shown here:

String getSelectedText()

void select(int startIndex, int endIndex)

getSelectedText() returns the selected text. The select() method selects the characters

beginning at startIndex and ending at endIndex–1.

You can control whether the contents of a text field may be modified by the user by calling

setEditable(). You can determine editability by calling isEditable(). These methods are shown

here:

boolean isEditable()

void setEditable(boolean canEdit)

isEditable() returns true if the text may be changed and false if not. In setEditable(), if canEdit

we dont take any liability for the notes correctness. http://www.rgpvonline.com

33

is true, the text may be changed. If it is false, the text cannot be altered. There may be times

when you will want the user to enter text that is not displayed, such as a password. You can

disable the echoing of the characters as they are typed by calling setEchoChar(). This method

specifies a single character that the TextField will display when characters are entered (thus,

the actual characters typed will not be shown). You can check a text field to see if it is in this

mode with the echoCharIsSet() method. You can retrieve the echo character by calling the

getEchoChar() method. These methods are as follows:

void setEchoChar(char ch)

boolean echoCharIsSet()

char getEchoChar()

Here, ch specifies the character to be echoed.

Handling a TextField

Since text fields perform their own editing functions, your program generally will not respond

to individual key events that occur within a text field. However, you may want to respond when

the user presses ENTER. When this occurs, an action event is generated.

Here is an example that creates the classic user name and password screen:

// Demonstrate text field.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="TextFieldDemo" width=380 height=150>

</applet>

*/

public class TextFieldDemo extends Applet

implements ActionListener {

TextField name, pass;

public void init() {

Label namep = new Label("Name: ", Label.RIGHT);

Label passp = new Label("Password: ", Label.RIGHT);

name = new TextField(12);

pass = new TextField(8);

pass.setEchoChar('?');

add(namep);

add(name);

add(passp);

add(pass);

// register to receive action events

name.addActionListener(this);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

34

pass.addActionListener(this);

}

// User pressed Enter.

public void actionPerformed(ActionEvent ae) {

repaint();

}

public void paint(Graphics g) {

g.drawString("Name: " + name.getText(), 6, 60);

g.drawString("Selected text in name: "

+ name.getSelectedText(), 6, 80);

g.drawString("Password: " + pass.getText(), 6, 100);

}

}

Sample output from the TextFieldDemo applet is shown in Figure given below.

Using a TextArea

Sometimes a single line of text input is not enough for a given task. To handle these situations,

the AWT includes a simple multiline editor called TextArea. Following are the constructors for

TextArea:

TextArea() throws HeadlessException

TextArea(int numLines, int numChars) throws HeadlessException

TextArea(String str) throws HeadlessException

TextArea(String str, int numLines, int numChars) throws HeadlessException

TextArea(String str, int numLines, int numChars, int sBars) throws HeadlessException

Here, numLines specifies the height, in lines, of the text area, and numChars specifies its width,

in characters. Initial text can be specified by str. In the fifth form, you can specify the scroll bars

we dont take any liability for the notes correctness. http://www.rgpvonline.com

35

that you want the control to have. sBars must be one of these values:

SCROLLBARS_BOTH SCROLLBARS_NONE

SCROLLBARS_HORIZONTAL_ONLY SCROLLBARS_VERTICAL_ONLY

TextArea is a subclass of TextComponent. Therefore, it supports the getText(), setText(),

getSelectedText(), select(), isEditable(), and setEditable() methods described in the

preceding section.

TextArea adds the following methods:

void append(String str)

void insert(String str, int index)

void replaceRange(String str, int startIndex, int endIndex)

The append() method appends the string specified by str to the end of the current text. insert(

) inserts the string passed in str at the specified index. To replace text, call replaceRange(). It

replaces the characters from startIndex to endIndex–1, with the replacement text passed in str.

Text areas are almost self-contained controls. Your program incurs virtually no management

overhead. Text areas only generate got-focus and lost-focus events.

Normally, your program simply obtains the current text when it is needed. The following

program creates a TextArea control:

// Demonstrate TextArea.

import java.awt.*;

import java.applet.*;

/*

<applet code="TextAreaDemo" width=300 height=250>

</applet>

*/

public class TextAreaDemo extends Applet {

public void init() {

String val =

"Java SE 6 is the latest version of the most\n" +

"widely-used computer language for Internet programming.\n" +

"Building on a rich heritage, Java has advanced both\n" +

"the art and science of computer language design.\n\n" +

"One of the reasons for Java's ongoing success is its\n" +

"constant, steady rate of evolution. Java has never stood\n" +

"still. Instead, Java has consistently adapted to the\n" +

"rapidly changing landscape of the networked world.\n" +

"Moreover, Java has often led the way, charting the\n" +

"course for others to follow.";

TextArea text = new TextArea(val, 10, 30);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

36

add(text);

}

}

Here is sample output from the TextAreaDemo applet:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

37

Unit 2

Topic: Layout Managers

Unit 2/Lecture 8

Layout Managers

All of the components that we have shown so far have been positioned by the default layout

manager. As we mentioned at the beginning of this chapter, a layout manager automatically

arranges your controls within a window by using some type of algorithm. If you have

programmed for other GUI environments, such as Windows, then you are accustomed to laying

out your controls by hand. While it is possible to lay out Java controls by hand, too, you

generally won’t want to, for two main reasons. First, it is very tedious to manually layout a large

number of components. Second, sometimes the width and height information is not yet

available when you need to arrange some control, because the native toolkit components

haven’t been realized. This is a chicken-and-egg situation; it is pretty confusing to figure out

when it is okay to use the size of a given component to position it relative to another. Each

Container object has a layout manager associated with it. A layout manager is an instance of

any class that implements the LayoutManager interface. The layout manager is set by the

setLayout() method. If no call to setLayout() is made, then the default layout manager is used.

Whenever a container is resized (or sized for the first time), the layout manager is used to

position each of the components within it.

The setLayout() method has the following general form:

void setLayout(LayoutManager layoutObj)

Here, layoutObj is a reference to the desired layout manager. If you wish to disable the layout

manager and position components manually, pass null for layoutObj. If you do this, you will

need to determine the shape and position of each component manually, using the setBounds()

method defined by Component. Normally, you will want to use a layout manager.

FlowLayout

FlowLayout is the default layout manager. This is the layout manager that the preceding

examples have used. FlowLayout implements a simple layout style, which is similar to how

words flow in a text editor. The direction of the layout is governed by the container’s

component orientation property, which, by default, is left to right, top to bottom. Therefore, by

default, components are laid out line-by-line beginning at the upper-left corner. In all cases,

when a line is filled, layout advances to the next line. A small space is left between each

component, above and below, as well as left and right. Here are the constructors for

FlowLayout: [RGPV Dec 201473)]

FlowLayout()

FlowLayout(int how)

FlowLayout(int how, int horz, int vert)

The first form creates the default layout, which centers components and leaves five pixels of

space between each component. The second form lets you specify how each line is aligned.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

38

Valid values for how are as follows:

FlowLayout.LEFT

FlowLayout.CENTER

FlowLayout.RIGHT

FlowLayout.LEADING

FlowLayout.TRAILING

These values specify left, center, right, leading edge, and trailing edge alignment, respectively.

The third constructor allows you to specify the horizontal and vertical space left between

components in horz and vert, respectively.

// Use left-aligned flow layout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="FlowLayoutDemo" width=250 height=200>

</applet>

*/

public class FlowLayoutDemo extends Applet

implements ItemListener {

String msg = "";

Checkbox winXP, winVista, solaris, mac;

public void init() {

// set left-aligned flow layout

setLayout(new FlowLayout(FlowLayout.LEFT));

winXP = new Checkbox("Windows XP", null, true);

winVista = new Checkbox("Windows Vista");

solaris = new Checkbox("Solaris");

mac = new Checkbox("Mac OS");

add(winXP);

add(winVista);

add(solaris);

add(mac);

// register to receive item events

winXP.addItemListener(this);

winVista.addItemListener(this);

solaris.addItemListener(this);

mac.addItemListener(this);

}

// Repaint when status of a check box changes.

public void itemStateChanged(ItemEvent ie) {

repaint();

we dont take any liability for the notes correctness. http://www.rgpvonline.com

39

}

// Display current state of the check boxes.

public void paint(Graphics g) {

msg = "Current state: ";

g.drawString(msg, 6, 80);

msg = " Windows XP: " + winXP.getState();

g.drawString(msg, 6, 100);

msg = " Windows Vista: " + winVista.getState();

g.drawString(msg, 6, 120);

msg = " Solaris: " + solaris.getState();

g.drawString(msg, 6, 140);

msg = " Mac: " + mac.getState();

g.drawString(msg, 6, 160);

}

}

BorderLayout

The BorderLayout class implements a common layout style for top-level windows. It has four

narrow, fixed-width components at the edges and one large area in the center. The four sides

are referred to as north, south, east, and west. The middle area is called the center. Here are

the constructors defined by BorderLayout:

BorderLayout()

BorderLayout(int horz, int vert)

The first form creates a default border layout. The second allows you to specify the horizontal

and vertical space left between components in horz and vert, respectively. BorderLayout

we dont take any liability for the notes correctness. http://www.rgpvonline.com

40

defines the following constants that specify the regions:

// Demonstrate BorderLayout.

import java.awt.*;

import java.applet.*;

import java.util.*;

/*

<applet code="BorderLayoutDemo" width=400 height=200>

</applet>

*/

public class BorderLayoutDemo extends Applet {

public void init() {

setLayout(new BorderLayout());

add(new Button("This is across the top."),

BorderLayout.NORTH);

add(new Label("The footer message might go here."),

BorderLayout.SOUTH);

add(new Button("Right"), BorderLayout.EAST);

add(new Button("Left"), BorderLayout.WEST);

String msg = "The reasonable man adapts " +

"himself to the world;\n" +

"the unreasonable one persists in " +

"trying to adapt the world to himself.\n" +

"Therefore all progress depends " +

"on the unreasonable man.\n\n" +

" - George Bernard Shaw\n\n";

add(new TextArea(msg), BorderLayout.CENTER);

}

}

GridLayout[RGPV Dec 2014(7)]

GridLayout lays out components in a two-dimensional grid. When you instantiate a GridLayout,

you define the number of rows and columns. The constructors supported by GridLayout are

shown here:

GridLayout()

GridLayout(int numRows, int numColumns)

GridLayout(int numRows, int numColumns, int horz, int vert)

we dont take any liability for the notes correctness. http://www.rgpvonline.com

41

The first form creates a single-column grid layout. The second form creates a grid layout with

the specified number of rows and columns. The third form allows you to specify the horizontal

and vertical space left between components in horz and vert, respectively. Either numRows or

numColumns can be zero. Specifying numRows as zero allows for unlimited-length

columns.Specifying numColumns as zero allows for unlimited-length rows.

Here is a sample program that creates a 4×4 grid and fills it in with 15 buttons, each labeled

with its index:

// Demonstrate GridLayout

import java.awt.*;

import java.applet.*;

/*

<applet code="GridLayoutDemo" width=300 height=200>

</applet>

*/

public class GridLayoutDemo extends Applet {

static final int n = 4;

public void init() {

setLayout(new GridLayout(n, n));

setFont(new Font("SansSerif", Font.BOLD, 24));

for(int i = 0; i < n; i++) {

for(int j = 0; j < n; j++) {

int k = i * n + j;

if(k > 0)

add(new Button("" + k));

}

}

}

}

Following is the output generated by the GridLayoutDemo applet:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

42

CardLayout

The CardLayout class is unique among the other layout managers in that it stores several

different layouts. Each layout can be thought of as being on a separate index card in a deck that

can be shuffled so that any card is on top at a given time. This can be useful for user interfaces

with optional components that can be dynamically enabled and disabled upon user input. You

can prepare the other layouts and have them hidden, ready to be activated when needed.

CardLayout provides these two constructors:

CardLayout()

CardLayout(int horz, int vert)

The first form creates a default card layout. The second form allows you to specify the

horizontal and vertical space left between components in horz and vert, respectively. Use of a

card layout requires a bit more work than the other layouts. The cards are typically held in an

object of type Panel. This panel must have CardLayout selected as its layout manager. The

cards that form the deck are also typically objects of type Panel. Thus, you must create a panel

that contains the deck and a panel for each card in the deck. Next, you add to the appropriate

panel the components that form each card. You then add these panels to the panel

for which CardLayout is the layout manager. Finally, you add this panel to the window. Once

these steps are complete, you must provide some way for the user to select between cards.

One common approach is to include one push button for each card in the deck. When card

panels are added to a panel, they are usually given a name. Thus, most of the time, you will use

this form of add() when adding cards to a panel:

void add(Component panelObj, Object name)

Here, name is a string that specifies the name of the card whose panel is specified by panelObj.

After you have created a deck, your program activates a card by calling one of the following

we dont take any liability for the notes correctness. http://www.rgpvonline.com

43

methods defined by CardLayout:

void first(Container deck)

void last(Container deck)

void next(Container deck)

void previous(Container deck)

void show(Container deck, String cardName)

Here, deck is a reference to the container (usually a panel) that holds the cards, and cardName

is the name of a card. Calling first() causes the first card in the deck to be shown. To show the

last card, call last(). To show the next card, call next(). To show the previous card, call

previous(). Both next() and previous() automatically cycle back to the top or bottom of the

deck, respectively. The show() method displays the card whose name is passed in cardName.

// Demonstrate CardLayout.

import java.awt.*;

import java.awt.event.*;

import java.applet.*;

/*

<applet code="CardLayoutDemo" width=300 height=100>

</applet>

*/

public class CardLayoutDemo extends Applet

implements ActionListener, MouseListener {

Checkbox winXP, winVista, solaris, mac;

Panel osCards;

CardLayout cardLO;

Button Win, Other;

public void init() {

Win = new Button("Windows");

Other = new Button("Other");

add(Win);

add(Other);

cardLO = new CardLayout();

osCards = new Panel();

osCards.setLayout(cardLO); // set panel layout to card layout

winXP = new Checkbox("Windows XP", null, true);

winVista = new Checkbox("Windows Vista");

solaris = new Checkbox("Solaris");

mac = new Checkbox("Mac OS");

// add Windows check boxes to a panel

Panel winPan = new Panel();

winPan.add(winXP);

winPan.add(winVista);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

44

// add other OS check boxes to a panel

Panel otherPan = new Panel();

otherPan.add(solaris);

otherPan.add(mac);

// add panels to card deck panel

osCards.add(winPan, "Windows");

osCards.add(otherPan, "Other");

// add cards to main applet panel

add(osCards);

// register to receive action events

Win.addActionListener(this);

Other.addActionListener(this);

// register mouse events

addMouseListener(this);

}

// Cycle through panels.

public void mousePressed(MouseEvent me) {

cardLO.next(osCards);

}

// Provide empty implementations for the other MouseListener methods.

public void mouseClicked(MouseEvent me) {

}

public void mouseEntered(MouseEvent me) {

}

public void mouseExited(MouseEvent me) {

}

public void mouseReleased(MouseEvent me) {

}

public void actionPerformed(ActionEvent ae) {

if(ae.getSource() == Win) {

cardLO.show(osCards, "Windows");

}

else {

cardLO.show(osCards, "Other");

}

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

45

S.NO RGPV QUESTION YEAR MARKS

Q.1 What are the different types of Layout

in Java?

DEC 2012 8

Q-2. Explain the Layout Manager in Java.

Also, describe the concept of menus.

June-2011 8

Q-3. How many Layouts are available in

AWT Package?

Dec-2009 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

46

Unit 2

Topic: Java Event Handling Model

Unit 2/Lecture 9

Java Event Handling Model[RGPV Dec 2014(7)]

The Delegation Event Model

The modern approach to handling events is based on the delegation event model, which defines

standard and consistent mechanisms to generate and process events. Its concept is quite

simple: a source generates an event and sends it to one or more listeners. In this scheme, the

listener simply waits until it receives an event. Once an event is received, the listener processes

the event and then returns. The advantage of this design is that the application logic that

processes events is cleanly separated from the user interface logic that generates those events.

A user interface element is able to delegate the processing of an event to a separate piece of

code. In the delegation event model, listeners must register with a source in order to receive an

event notification. This provides an important benefit: notifications are sent only to listeners

that want to receive them. This is a more efficient way to handle events than the design used

by the old Java 1.0 approach. Previously, an event was propagated up the containment

hierarchy until it was handled by a component. This required components to receive events

that they did not process, and it wasted valuable time. The delegation event model eliminates

this overhead.

Events

In the delegation model, an event is an object that describes a state change in a source. It can

be generated as a consequence of a person interacting with the elements in a graphical user

interface. Some of the activities that cause events to be generated are pressing a button,

entering a character via the keyboard, selecting an item in a list, and clicking the mouse. Many

other user operations could also be cited as examples. Events may also occur that are not

directly caused by interactions with a user interface. For example, an event may be generated

when a timer expires, a counter exceeds a value, a software or hardware failure occurs, or an

operation is completed. You are free to define events that are appropriate for your application.

Event Sources

Asource is an object that generates an event. This occurs when the internal state of that object

changes in some way. Sources may generate more than one type of event.

A source must register listeners in order for the listeners to receive notifications about a

specific type of event. Each type of event has its own registration method. Here is the general

form:

public void addTypeListener(TypeListener el)

Here, Type is the name of the event, and el is a reference to the event listener. For example, the

method that registers a keyboard event listener is called addKeyListener(). The method that

we dont take any liability for the notes correctness. http://www.rgpvonline.com

47

registers a mouse motion listener is called addMouseMotionListener(). When an event occurs,

all registered listeners are notified and receive a copy of the event object. This is known as

multicasting the event. In all cases, notifications are sent only to listeners that register to

receive them.

Event Listeners

A listener is an object that is notified when an event occurs. It has two major requirements.

First, it must have been registered with one or more sources to receive notifications about

specific types of events. Second, it must implement methods to receive and process these

notifications.

The methods that receive and process events are defined in a set of interfaces found in

java.awt.event. For example, the MouseMotionListener interface defines two methods to

receive notifications when the mouse is dragged or moved. Any object may receive and process

one or both of these events if it provides an implementation of this interface.

Event Classes

At the root of the Java event class hierarchy is EventObject, which is in java.util. It is the

superclass for all events. Its one constructor is shown here:

EventObject(Object src)

 Here, src is the object that generates this event. EventObject contains two methods:

getSource() and toString().

The getSource() method returns the source of the event. Its general form is shown here:

Object getSource() As expected, toString() returns the string equivalent of the event.

The class AWTEvent, defined within the java.awt package, is a subclass of EventObject. It is the

superclass (either directly or indirectly) of all AWT-based events used by the delegation event

model. Its getID() method can be used to determine the type of the event. The signature of this

method is shown here:

int getID()

Additional details about AWTEvent are provided at the end of Chapter 24. At this point, it is

important to know only that all of the other classes discussed in this section are subclasses of

AWTEvent.

To summarize:

• EventObject is a superclass of all events.

• AWTEvent is a superclass of all AWT events that are handled by the delegation

event model.

The package java.awt.event defines many types of events that are generated by various user

we dont take any liability for the notes correctness. http://www.rgpvonline.com

48

interface elements.

Action Event Class

An ActionEvent is generated when a button is pressed, a list item is double-clicked, or a menu

item is selected. The ActionEvent class defines four integer constants that can be used to

identify any modifiers associated with an action event: ALT_MASK, CTRL_MASK, META_MASK,

and SHIFT_MASK. In addition, there is an integer constant, ACTION_ PERFORMED, which can

be used to identify action events.

ActionEvent has these three constructors:

ActionEvent(Object src, int type, String cmd)

ActionEvent(Object src, int type, String cmd, int modifiers)

ActionEvent(Object src, int type, String cmd, long when, int modifiers)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type, and its command string is cmd. The argument modifiers indicates which

modifier keys (ALT, CTRL, META, and/or SHIFT) were pressed when the event was generated.

The when parameter specifies when the event occurred.

You can obtain the command name for the invoking ActionEvent object by using the

getActionCommand() method, shown here:

String getActionCommand()

For example, when a button is pressed, an action event is generated that has a command name

equal to the label on that button.

The getModifiers() method returns a value that indicates which modifier keys (ALT, CTRL,

META, and/or SHIFT) were pressed when the event was generated. Its form is shown here:

int getModifiers()

The AdjustmentEvent Class

An AdjustmentEvent is generated by a scroll bar. There are five types of adjustment events.

The AdjustmentEvent class defines integer constants that can be used to identify them. The

constants and their meanings are shown here:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

49

In addition, there is an integer constant, ADJUSTMENT_VALUE_CHANGED, that indicates that a

change has occurred.

Here is one AdjustmentEvent constructor:

AdjustmentEvent(Adjustable src, int id, int type, int data)

Here, src is a reference to the object that generated this event. The id specifies the event. The

type of the adjustment is specified by type, and its associated data is data. The getAdjustable()

method returns the object that generated the event. Its form is

shown here:

Adjustable getAdjustable()

The type of the adjustment event may be obtained by the getAdjustmentType() method. It

returns one of the constants defined by AdjustmentEvent. The general form is shown here:

int getAdjustmentType()

The amount of the adjustment can be obtained from the getValue() method, shown here:

int getValue()

For example, when a scroll bar is manipulated, this method returns the value represented by

that change.

The ContainerEvent Class

A ContainerEvent is generated when a component is added to or removed from a container.

There are two types of container events. The ContainerEvent class defines int constants that

can be used to identify them: COMPONENT_ADDED and COMPONENT_REMOVED.

They indicate that a component has been added to or removed from the container.

ContainerEvent is a subclass of ComponentEvent and has this constructor:

ContainerEvent(Component src, int type, Component comp)

Here, src is a reference to the container that generated this event. The type of the event is

specified by type, and the component that has been added to or removed from the container is

we dont take any liability for the notes correctness. http://www.rgpvonline.com

50

comp.

You can obtain a reference to the container that generated this event by using the

getContainer() method, shown here:

Container getContainer()

The getChild() method returns a reference to the component that was added to or removed

from the container. Its general form is shown here:

Component getChild()

The FocusEvent Class

AFocusEvent is generated when a component gains or loses input focus. These events are

identified by the integer constants FOCUS_GAINED and FOCUS_LOST.

FocusEvent is a subclass of ComponentEvent and has these constructors:

FocusEvent(Component src, int type)

FocusEvent(Component src, int type, boolean temporaryFlag)

FocusEvent(Component src, int type, boolean temporaryFlag, Component other)

Here, src is a reference to the component that generated this event. The type of the event is

specified by type. The argument temporaryFlag is set to true if the focus event is temporary.

Otherwise, it is set to false. (A temporary focus event occurs as a result of another user

interface operation. For example, assume that the focus is in a text field. If the user moves the

mouse to adjust a scroll bar, the focus is temporarily lost.)

The other component involved in the focus change, called the opposite component, is passed

in other. Therefore, if a FOCUS_GAINED event occurred, other will refer to the component that

lost focus. Conversely, if a FOCUS_LOST event occurred, other will refer to the component that

gains focus.

You can determine the other component by calling getOppositeComponent(),

shown here:

Component getOppositeComponent()

The opposite component is returned.

The isTemporary() method indicates if this focus change is temporary. Its form is shown here:

boolean isTemporary()

The method returns true if the change is temporary. Otherwise, it returns false.

The InputEvent Class

The abstract class InputEvent is a subclass of ComponentEvent and is the superclass for

we dont take any liability for the notes correctness. http://www.rgpvonline.com

51

component input events. Its subclasses are KeyEvent and MouseEvent.

InputEvent defines several integer constants that represent any modifiers, such as the

control key being pressed, that might be associated with the event. Originally, the InputEvent

class defined the following eight values to represent the modifiers:

ALT_MASK BUTTON2_MASK META_MASK

ALT_GRAPH_MASK BUTTON3_MASK SHIFT_MASK

BUTTON1_MASK CTRL_MASK

However, because of possible conflicts between the modifiers used by keyboard events and

mouse events, and other issues, the following extended modifier values were added:

ALT_DOWN_MASK BUTTON2_DOWN_MASK META_DOWN_MASK

ALT_GRAPH_DOWN_MASK BUTTON3_DOWN_MASK SHIFT_DOWN_MASK

BUTTON1_DOWN_MASK CTRL_DOWN_MASK

When writing new code, it is recommended that you use the new, extended modifiers rather

than the original modifiers. To test if a modifier was pressed at the time an event is generated,

use the isAltDown(), isAltGraphDown(), isControlDown(), isMetaDown(), and isShiftDown()

methods. The forms of these methods are shown here:

boolean isAltDown()

boolean isAltGraphDown()

boolean isControlDown()

boolean isMetaDown()

boolean isShiftDown()

You can obtain a value that contains all of the original modifier flags by calling the

getModifiers() method. It is shown here:

int getModifiers()

You can obtain the extended modifiers by calling getModifiersEx(), which is shown here:

int getModifiersEx()

The ItemEvent Class

An ItemEvent is generated when a check box or a list item is clicked or when a checkable menu

item is selected or deselected. (Check boxes and list boxes are described later in this book.)

There are two types of item events, which are identified by the following integer constants:

DESELECTED The user deselected an item.

SELECTED The user selected an item.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

52

In addition, ItemEvent defines one integer constant, ITEM_STATE_CHANGED, that

signifies a change of state.

ItemEvent has this constructor:

ItemEvent(ItemSelectable src, int type, Object entry, int state)

Here, src is a reference to the component that generated this event. For example, this might be

a list or choice element. The type of the event is specified by type. The specific item that

generated the item event is passed in entry. The current state of that item is in state. The

getItem() method can be used to obtain a reference to the item that generated an event. Its

signature is shown here:

Object getItem()

The getItemSelectable() method can be used to obtain a reference to the ItemSelectable

object that generated an event. Its general form is shown here:

ItemSelectable getItemSelectable()

Lists and choices are examples of user interface elements that implement the ItemSelectable

interface.

The getStateChange() method returns the state change (that is, SELECTED or DESELECTED) for

the event. It is shown here:

int getStateChange()

The KeyEvent Class

A KeyEvent is generated when keyboard input occurs. There are three types of key events,

which are identified by these integer constants: KEY_PRESSED, KEY_RELEASED, and

KEY_TYPED. The first two events are generated when any key is pressed or released. The last

event occurs only when a character is generated. Remember, not all keypresses result in

characters. For example, pressing SHIFT does not generate a character.

There are many other integer constants that are defined by KeyEvent. For example, VK_0

through VK_9 and VK_A through VK_Z define the ASCII equivalents of the numbers and letters.

Here are some others:

VK_ALT VK_DOWN VK_LEFT VK_RIGHT

VK_CANCEL VK_ENTER VK_PAGE_DOWN VK_SHIFT

VK_CONTROL VK_ESCAPE VK_PAGE_UP VK_UP

The VK constants specify virtual key codes and are independent of any modifiers, such as

control, shift, or alt.

KeyEvent is a subclass of InputEvent. Here is one of its constructors:

KeyEvent(Component src, int type, long when, int modifiers, int code, char ch)

we dont take any liability for the notes correctness. http://www.rgpvonline.com

53

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the key was pressed is passed in when. The

modifiers argument indicates which modifiers were pressed when this key event occurred. The

virtual key code, such as VK_UP, VK_A, and so forth, is passed in code. The character equivalent

(if one exists) is passed in ch. If no valid character exists, then ch contains

CHAR_UNDEFINED.

For KEY_TYPED events, code will contain VK_UNDEFINED.

The KeyEvent class defines several methods, but the most commonly used ones are

getKeyChar(), which returns the character that was entered, and getKeyCode(), which returns

the key code. Their general forms are shown here:

char getKeyChar()

int getKeyCode()

If no valid character is available, then getKeyChar() returns CHAR_UNDEFINED. When

a KEY_TYPED event occurs, getKeyCode() returns VK_UNDEFINED.

The MouseEvent Class

There are eight types of mouse events. The MouseEvent class defines the following integer

constants that can be used to identify them:

MOUSE_CLICKED The user clicked the mouse.

MOUSE_DRAGGED The user dragged the mouse.

MOUSE_ENTERED The mouse entered a component.

MOUSE_EXITED The mouse exited from a component.

MOUSE_MOVED The mouse moved.

MOUSE_PRESSED The mouse was pressed.

MOUSE_RELEASED The mouse was released.

MOUSE_WHEEL The mouse wheel was moved.

MouseEvent is a subclass of InputEvent. Here is one of its constructors:

MouseEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup)

Here, src is a reference to the component that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when. The

modifiers argument indicates which modifiers were pressed when a mouse event occurred. The

coordinates of the mouse are passed in x and y. The click count is passed in clicks. The

triggersPopup flag indicates if this event causes a pop-up menu to appear on this platform. Two

commonly used methods in this class are getX() and getY(). These return the X and Y

coordinates of the mouse within the component when the event occurred. Their forms are

we dont take any liability for the notes correctness. http://www.rgpvonline.com

54

shown here:

int getX()

int getY()

Alternatively, you can use the getPoint() method to obtain the coordinates of the mouse.

It is shown here:

Point getPoint()

It returns a Point object that contains the X,Y coordinates in its integer members: x and y. The

translatePoint() method changes the location of the event. Its form is shown here:

void translatePoint(int x, int y)

Here, the arguments x and y are added to the coordinates of the event.

The getClickCount() method obtains the number of mouse clicks for this event.

Its signature is shown here:

int getClickCount()

The isPopupTrigger() method tests if this event causes a pop-up menu to appear on this

platform. Its form is shown here:

boolean isPopupTrigger()

Also available is the getButton() method, shown here:

int getButton()

It returns a value that represents the button that caused the event. The return value will be one

of these constants defined by MouseEvent:

NOBUTTON BUTTON1 BUTTON2 BUTTON3

The NOBUTTON value indicates that no button was pressed or released.

Java SE 6 added three methods to MouseEvent that obtain the coordinates of the mouse

relative to the screen rather than the component. They are shown here:

Point getLocationOnScreen()

int getXOnScreen()

int getYOnScreen()

The getLocationOnScreen() method returns a Point object that contains both the X and

Y coordinate. The other two methods return the indicated coordinate.

The MouseWheelEvent Class

The MouseWheelEvent class encapsulates a mouse wheel event. It is a subclass of

MouseEvent. Not all mice have wheels. If a mouse has a wheel, it is located between the left

we dont take any liability for the notes correctness. http://www.rgpvonline.com

55

and right buttons. Mouse wheels are used for scrolling. MouseWheelEvent defines these two

integer constants:

WHEEL_BLOCK_SCROLL A page-up or page-down scroll event occurred.

WHEEL_UNIT_SCROLL A line-up or line-down scroll event occurred.

Here is one of the constructors defined by MouseWheelEvent:

MouseWheelEvent(Component src, int type, long when, int modifiers,

int x, int y, int clicks, boolean triggersPopup,

int scrollHow, int amount, int count)

Here, src is a reference to the object that generated the event. The type of the event is

specified by type. The system time at which the mouse event occurred is passed in when. The

modifiers argument indicates which modifiers were pressed when the event occurred. The

coordinates of the mouse are passed in x and y. The number of clicks the wheel has rotated is

passed in clicks. The triggersPopup flag indicates if this event causes a pop-up menu to appear

on this platform. The scrollHow value must be either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_

SCROLL. The number of units to scroll is passed in amount. The count parameter indicates the

number of rotational units that the wheel moved.

MouseWheelEvent defines methods that give you access to the wheel event. To obtain

the number of rotational units, call getWheelRotation(), shown here:

int getWheelRotation()

It returns the number of rotational units. If the value is positive, the wheel moved

counterclockwise. If the value is negative, the wheel moved clockwise.

To obtain the type of scroll, call getScrollType(), shown next:

int getScrollType()

It returns either WHEEL_UNIT_SCROLL or WHEEL_BLOCK_SCROLL.

If the scroll type is WHEEL_UNIT_SCROLL, you can obtain the number of units to scroll

by calling getScrollAmount(). It is shown here:

int getScrollAmount()

The TextEvent Class

Instances of this class describe text events. These are generated by text fields and text areas

when characters are entered by a user or program. TextEvent defines the integer constant

TEXT_VALUE_CHANGED.

The one constructor for this class is shown here:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

56

TextEvent(Object src, int type)

Here, src is a reference to the object that generated this event. The type of the event is

specified by type.

The TextEvent object does not include the characters currently in the text component that

generated the event. Instead, your program must use other methods associated with the text

component to retrieve that information. This operation differs from other event objects

discussed in this section. For this reason, no methods are discussed here for the TextEvent

class. Think of a text event notification as a signal to a listener that it should retrieve

information from a specific text component.

The WindowEvent Class

There are ten types of window events. TheWindowEvent class defines integer constants that

can be used to identify them. The constants and their meanings are shown here:

WINDOW_ACTIVATED The window was activated.

WINDOW_CLOSED The window has been closed.

WINDOW_CLOSING The user requested that the window be closed.

WINDOW_DEACTIVATED The window was deactivated.

WINDOW_DEICONIFIED The window was deiconified.

WINDOW_GAINED_FOCUS The window gained input focus.

WINDOW_ICONIFIED The window was iconified.

WINDOW_LOST_FOCUS The window lost input focus.

WINDOW_OPENED The window was opened.

WINDOW_STATE_CHANGED The state of the window changed.

WindowEvent is a subclass of ComponentEvent. It defines several constructors. The

first is

WindowEvent(Window src, int type)

Here, src is a reference to the object that generated this event. The type of the event is type.

The next three constructors offer more detailed control:

WindowEvent(Window src, int type, Window other)

WindowEvent(Window src, int type, int fromState, int toState)

WindowEvent(Window src, int type, Window other, int fromState, int toState)

Here, other specifies the opposite window when a focus or activation event occurs. The

fromState specifies the prior state of the window, and toState specifies the new state that the

window will have when a window state change occurs.

A commonly used method in this class is getWindow(). It returns the Window object

we dont take any liability for the notes correctness. http://www.rgpvonline.com

57

that generated the event. Its general form is shown here:

Window getWindow()

WindowEvent also defines methods that return the opposite window (when a focus or

activation event has occurred), the previous window state, and the current window state.

These methods are shown here:

Window getOppositeWindow()

int getOldState()

int getNewState()

S.NO RGPV QUESTION YEAR MARKS

Q.1 What are the major components of

event delegation model? Discuss with

suitable example.

DEC 2014 7

Q.2 Explain the following with the help of

small program.

a) Form Layout

b). Flow Layout

c). Grid Layout

DEC 2014 7

Q.3 What are the following components of

Deligation Event Model of Java?

Explain with the help of Example.

a). Event

b). Event Source

c). Event Listeners

DEC 2012 12

Q.4 What is Event? Explain different

components of an Event

DEC 2010 8

References:

Book Authr Priority

Java Programming Herbertt Schield 1

Java E Balaguruswamy 2

Java Khalid Mugal 3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

