
1

Unit 3

Topic:Multithreading and Exception Handling

Unit 3/Lecture 1

MultiThreading [RGPV/June 2011(10)]

Unlike many other computer languages, Java provides built-in support for multithreaded

programming. A multithreaded program contains two or more parts that can run

concurrently. Each part of such a program is called a thread, and each thread defines a

separate path of execution. Thus, multithreading is a specialized form of multitasking. You

are almost certainly acquainted with multitasking, because it is supported by virtually all

modern operating systems. However, there are two distinct types of multitasking:

processbased and thread-based. It is important to understand the difference between the

two. For most readers, process-based multitasking is the more familiar form. A process is, in

essence, a program that is executing. Thus, process-based multitasking is the feature that

allows your computer to run two or more programs concurrently. For example, process-

based multitasking enables you to run the Java compiler at the same time that you are using

a text editor. In processbased multitasking, a program is the smallest unit of code that can

be dispatched by the scheduler.

In a thread-based multitasking environment, the thread is the smallest unit of dispatchable

code. This means that a single program can perform two or more tasks simultaneously. For

instance, a text editor can format text at the same time that it is printing, as long as these

two actions are being performed by two separate threads. Thus, process-based multitasking

deals with the big picture, and thread-based multitasking handles the details.

The Java Thread Model

The Java run-time system depends on threads for many things, and all the class libraries are

designed with multithreading in mind. In fact, Java uses threads to enable the entire

environment to be asynchronous. This helps reduce inefficiency by preventing the waste of

CPU cycles. The value of a multithreaded environment is best understood in contrast to its

counterpart. Single-threaded systems use an approach called an event loop with polling. In

this model, a single thread of control runs in an infinite loop, polling a single event queue to

decide what to do next. Once this polling mechanism returns with, say, a signal that a

network file is ready to be read, then the event loop dispatches control to the appropriate

event handler. Until this event handler returns, nothing else can happen in the system. This

wastes CPU time. It can also result in one part of a program dominating the system and

preventing any other events from being processed. In general, in a singled-threaded

environment, when a thread blocks (that is, suspends execution) because it is waiting for

some resource, the entire program stops running. The benefit of Java’s multithreading is

that the main loop/polling mechanism is eliminated.

One thread can pause without stopping other parts of your program. For example, the idle

time created when a thread reads data from a network or waits for user input can be

utilized elsewhere. Multithreading allows animation loops to sleep for a second between

each frame without causing the whole system to pause. When a thread blocks in a Java

program, only the single thread that is blocked pauses. All other threads continue to run.

Threads exist in several states. A thread can be running. It can be ready to run as soon as it

gets CPU time. Arunning thread can be suspended, which temporarily suspends its activity.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

Asuspended thread can then be resumed, allowing it to pick up where it left off. A thread

can be blocked when waiting for a resource. At any time, a thread can be terminated, which

halts its execution immediately. Once terminated, a thread cannot be resumed.

The Thread Class and the Runnable Interface

Java’s multithreading system is built upon the Thread class, its methods, and its companion

interface, Runnable. Thread encapsulates a thread of execution. Since you can’t directly

refer to the ethereal state of a running thread, you will deal with it through its proxy, the

Thread instance that spawned it. To create a new thread, your program will either extend

Thread or implement the Runnable interface. The Thread class defines several methods

that help manage threads. The ones that will be used in this chapter are shown here:

Creating a Thread

In the most general sense, you create a thread by instantiating an object of type Thread.

Java defines two ways in which this can be accomplished:

• You can implement the Runnable interface.

• You can extend the Thread class, itself.

The following two sections look at each method, in turn.

Implementing Runnable

The easiest way to create a thread is to create a class that implements the Runnable

interface. Runnable abstracts a unit of executable code. You can construct a thread on any

object that implements Runnable. To implement Runnable, a class need only implement a

single method

called run(), which is declared like this:

public void run()

Inside run(), you will define the code that constitutes the new thread. It is important to

understand that run() can call other methods, use other classes, and declare variables, just

like the main thread can. The only difference is that run() establishes the entry point for

another, concurrent thread of execution within your program. This thread will end when

run() returns.

After you create a class that implements Runnable, you will instantiate an object of type

Thread from within that class. Thread defines several constructors. The one that we will use

is shown here:

Thread(Runnable threadOb, String threadName)

In this constructor, threadOb is an instance of a class that implements the Runnable

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

interface.

This defines where execution of the thread will begin. The name of the new thread is

specified

by threadName. After the new thread is created, it will not start running until you call its

start() method, which is declared within Thread. In essence, start() executes a call to run().

The start()

method is shown here:

void start()

Here is an example that creates a new thread and starts it running:

// Create a second thread.

class NewThread implements Runnable {

Thread t;

NewThread() {

// Create a new, second thread

t = new Thread(this, "Demo Thread");

System.out.println("Child thread: " + t);

t.start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ThreadDemo {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

Inside NewThread’s constructor, a new Thread object is created by the following statement:

t = new Thread(this, "Demo Thread");

Passing this as the first argument indicates that you want the new thread to call the run()

method on this object. Next, start() is called, which starts the thread of execution beginning

at the run() method. This causes the child thread’s for loop to begin. After calling start(),

NewThread’s constructor returns to main(). When the main thread resumes, it enters its

for loop. Both threads continue running, sharing the CPU, until their loops finish. The output

produced by this program is as follows. (Your output may vary based on processor speed

and task load.)

Child thread: Thread[Demo Thread,5,main]

Main Thread: 5

Child Thread: 5

Child Thread: 4

Main Thread: 4

Child Thread: 3

Child Thread: 2

Main Thread: 3

Child Thread: 1

Exiting child thread.

Main Thread: 2

Main Thread: 1

Main thread exiting.

As mentioned earlier, in a multithreaded program, often the main thread must be the last

thread to finish running. In fact, for some older JVMs, if the main thread finishes before a

child thread has completed, then the Java run-time system may hang. The preceding

program ensures that the main thread finishes last, because the main thread sleeps for

1,000 milliseconds between iterations, but the child thread sleeps for only 500 milliseconds.

This causes the child thread to terminate earlier than the main thread. Shortly, you will see

a better way to wait for a thread to finish.

Extending Thread

The second way to create a thread is to create a new class that extends Thread, and then to

create an instance of that class. The extending class must override the run() method, which

is the entry point for the new thread. It must also call start() to begin execution of the new

thread. Here is the preceding program rewritten to extend Thread: // Create a second

thread by extending Thread

class NewThread extends Thread {

NewThread() {

// Create a new, second thread

super("Demo Thread");

System.out.println("Child thread: " + this);

start(); // Start the thread

}

// This is the entry point for the second thread.

public void run() {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

try {

for(int i = 5; i > 0; i--) {

System.out.println("Child Thread: " + i);

Thread.sleep(500);

}

} catch (InterruptedException e) {

System.out.println("Child interrupted.");

}

System.out.println("Exiting child thread.");

}

}

class ExtendThread {

public static void main(String args[]) {

new NewThread(); // create a new thread

try {

for(int i = 5; i > 0; i--) {

System.out.println("Main Thread: " + i);

Thread.sleep(1000);

}

} catch (InterruptedException e) {

System.out.println("Main thread interrupted.");

}

System.out.println("Main thread exiting.");

}

}

This program generates the same output as the preceding version. As you can see, the child

thread is created by instantiating an object of NewThread, which is derived from Thread.

Notice the call to super() inside NewThread. This invokes the following form of the Thread

constructor:

public Thread(String threadName)

Here, threadName specifies the name of the thread.

Thread Priorities

Java assigns to each thread a priority that determines how that thread should be treated

with respect to the others. Thread priorities are integers that specify the relative priority of

one thread to another. As an absolute value, a priority is meaningless; a higher-priority

thread doesn’t run any faster than a lower-priority thread if it is the only thread running.

Instead, a thread’s priority is used to decide when to switch from one running thread to the

next. This is called a context switch. The rules that determine when a context switch takes

place are simple:

• A thread can voluntarily relinquish control. This is done by explicitly yielding, sleeping, or

blocking on pending I/O. In this scenario, all other threads are examined, and the highest-

priority thread that is ready to run is given the CPU.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

• A thread can be preempted by a higher-priority thread. In this case, a lower-priority thread

that does not yield the processor is simply preempted—no matter what it is doing—by a

higher-priority thread. Basically, as soon as a higher-priority thread wants to run, it does.

This is called preemptive multitasking.

S.NO RGPV QUESTION YEAR MARKS

Q.1 In what situation a runnable interface

is required to launch a thread?

Dec 2009 2

Q.2 What are the basic idea of

multithreaded programming and its

synchronization?

Dec 2009 10

Q-3 Thread Synchronization Dec 2010 15

Q-4 What do you mean by Multithreading?

Write a sample code for

Multithreading?

June 2011 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

Unit 3

Topic: Thread Synchronization

Unit 3/Lecture 2

Thread Synchronization [RGPV/Dec-2009(10)][RGPV/Dec-2010(5)]

When two or more threads need access to a shared resource, they need some way to

ensure that the resource will be used by only one thread at a time. The process by which

this is achieved is called synchronization. As you will see, Java provides unique, language-

level support for it. Key to synchronization is the concept of the monitor (also called a

semaphore). A monitor is an object that is used as a mutually exclusive lock, or mutex. Only

one thread can own a monitor at a given time. When a thread acquires a lock, it is said to

have entered the monitor. All other threads attempting to enter the locked monitor will be

suspended until the first thread exits the monitor. These other threads are said to be

waiting for the monitor. A thread that owns a monitor can reenter the same monitor if it so

desires.

Synchronization in Java

Synchronization is easy in Java, because all objects have their own implicit monitor

associated with them. To enter an object’s monitor, just call a method that has been

modified with the synchronized keyword. While a thread is inside a synchronized method,

all other threads that try to call it (or any other synchronized method) on the same instance

have to wait. To exit the monitor and relinquish control of the object to the next waiting

thread, the owner of the monitor simply returns from the synchronized method.

To understand the need for synchronization, let’s begin with a simple example that does not

use it—but should. The following program has three simple classes. The first one, Callme,

has a single method named call(). The call() method takes a String parameter called msg.

This method tries to print the msg string inside of square brackets. The interesting thing to

notice is that after call() prints the opening bracket and the msg string, it calls Thread

.sleep(1000), which pauses the current thread for one second. The constructor of the next

class, Caller, takes a reference to an instance of the Callme class and a String, which are

stored in target and msg, respectively. The constructor also creates a new thread that will

call this object’s run() method. The thread is started immediately. The run() method of

Caller calls the call() method on the target instance of Callme, passing in the msg string.

Finally, the Synch class starts by creating a single instance of Callme, and three instances of

Caller, each with a unique message string. The same instance of Callme is passed to each

Caller.

// This program is not synchronized.

Class Callme {

void call(String msg) {

System.out.print([+ msg);

try {

Thread.sleep(1000);

} catch(InterruptedException e) {

System.out.println(Interrupted);

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

System.out.println(]);

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

public void run() {

target.call(msg);

}

}

class Synch {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, Hello);

Caller ob2 = new Caller(target, Synchronized);

Caller ob3 = new Caller(target, World);

// wait for threads to end

try {

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println(Interrupted);

}

}

}

Here is the output produced by this program:

Hello[Synchronized[World]

]

]

As you can see, by calling sleep(), the call() method allows execution to switch to another

thread. This results in the mixed-up output of the three message strings. In this program,

nothing exists to stop all three threads from calling the same method, on the same object,

at the same time. This is known as a race condition, because the three threads are racing

each other to complete the method. This example used sleep() to make the effects

repeatable and obvious. In most situations, a race condition is more subtle and less

predictable, because you can’t be sure when the context switch will occur. This can cause a

program to run right one time and wrong the next. To fix the preceding program, you must

serialize access to call(). That is, you must restrict its access to only one thread at a time. To

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

do this, you simply need to precede call()’s definition with the keyword synchronized, as

shown here:

class Callme {

synchronized void call(String msg) {

...

This prevents other threads from entering call() while another thread is using it. After

synchronized has been added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

Any time that you have a method, or group of methods, that manipulates the internal state

of an object in a multithreaded situation, you should use the synchronized keyword to

guard the state from race conditions. Remember, once a thread enters any synchronized

method on an instance, no other thread can enter any other synchronized method on the

same instance. However, nonsynchronized methods on that instance will continue to be

callable.

Class Callme {

synchronized void call(String msg) {

This prevents other threads from entering call() while another thread is using it. After

synchronized has been added to call(), the output of the program is as follows:

[Hello]

[Synchronized]

[World]

Any time that you have a method, or group of methods, that manipulates the internal state

of an object in a multithreaded situation, you should use the synchronized keyword to

guard the state from race conditions. Remember, once a thread enters any synchronized

method on an instance, no other thread can enter any other synchronized method on the

same instance. However, nonsynchronized methods on that instance will continue to be

callable.

The synchronized Statement [RGPV Dec 2014(7)]

While creating synchronized methods within classes that you create is an easy and effective

means of achieving synchronization, it will not work in all cases. To understand why,

consider the following. Imagine that you want to synchronize access to objects of a class

that was not designed for multithreaded access. That is, the class does not use synchronized

methods. Further, this class was not created by you, but by a third party, and you do not

have access to the source code. Thus, you can’t add synchronized to the appropriate

methods within the class. How can access to an object of this class be synchronized?

Fortunately, the solution to this problem is quite easy: You simply put calls to the methods

defined by this class inside a synchronized block.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

This is the general form of the synchronized statement:

synchronized(object) {

// statements to be synchronized

}

Here, object is a reference to the object being synchronized. A synchronized block ensures

that a call to a method that is a member of object occurs only after the current thread has

successfully entered object’s monitor.

Here is an alternative version of the preceding example, using a synchronized block

within the run() method:

// This program uses a synchronized block.

Class Callme {

void call(String msg) {

System.out.print([+ msg);

try {

Thread.sleep(1000);

} catch (InterruptedException e) {

System.out.println(Interrupted);

}

System.out.println(]);

}

}

class Caller implements Runnable {

String msg;

Callme target;

Thread t;

public Caller(Callme targ, String s) {

target = targ;

msg = s;

t = new Thread(this);

t.start();

}

// synchronize calls to call()

public void run() {

synchronized(target) { // synchronized block

target.call(msg);

}

}

}

class Synch1 {

public static void main(String args[]) {

Callme target = new Callme();

Caller ob1 = new Caller(target, Hello); Caller ob2 = new Caller(target, Synchronized);

Caller ob3 = new Caller(target, World);// wait for threads to end

try {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

ob1.t.join();

ob2.t.join();

ob3.t.join();

} catch(InterruptedException e) {

System.out.println(Interrupted);

}

}

}Here, the call() method is not modified by synchronized. Instead, the synchronized

statement is used inside Caller’s run() method. This causes the same correct output as the

preceding example, because each thread waits for the prior one to finish before proceeding.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Define Synchronization. Explain

synchronization method &

synchronization block.

Dec 2014 7

Q-1. Thread Synchronization Dec 2010 15

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

Unit 3

Topic: Thread Scheduling

Unit 3/Lecture 3

Thread Scheduling

In our introduction to how threads work, we introduced the thread scheduler, part of the

OS (usually) that is responsible for sharing the available CPUs out between the various

threads. How exactly the scheduler works depends on the individual platform, but various

modern operating systems (notably Windows and Linux) use largely similar techniques that

we’ll describe here. We’ll also mention some key 12ehavior12s between the platforms.

Note that we’ll continue to talk about a single thread scheduler. On multiprocessor systems,

there is generally some kind of scheduler per processor, which then need to be coordinated

in some way. (On some systems, switching on different processors is staggered to avoid

contention on shared scheduling tables.) Unless otherwise specified, we’ll use the term

thread scheduler to refer to this overall system of coordinated per-CPU schedulers.

Across platforms, thread scheduling
1
 tends to be based on at least the following criteria:

 a priority, or in fact usually multiple priority settings that we’ll discuss below;

 a quantum, or number of allocated timeslices of CPU, which essentially determines

the amount of CPU time a thread is allotted before it is forced to yield the CPU to

another thread of the same or lower priority (the system will keep track of the

remaining quantum at any given time, plus its default quantum, which could depend

on thread type and/or system configuration);

 a state, notably runnable vs waiting ;

 metrics about the 12ehavior of threads, such as recent CPU usage or the time since

it last ran (i.e. had a share of CPU), or the fact that it has just received an event it

was waiting for .

Most systems use what we might dub priority-based round-robin scheduling to some

extent. The general principles are:

 a thread of higher priority (which is a function of base and local priorities) will

preempt a thread of lower priority;

 otherwise, threads of equal priority will essentially take turns at getting an allocated

slice or quantum of CPU;

 there are a few extra tweaks to make things work.

States

Depending on the system, there are various states that a thread can be in. Probably the two

most interesting are:

 runnable, which essentially means ready to consume CPU ; being runnable is

generally the minimum requirement for a thread to actually be scheduled on to a

CPU.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.javamex.com/tutorials/threads/how_threads_work.shtml

13

 waiting, meaning that the thread currently cannot continue as it is waiting for a

resource such as a lock or I/O, for memory to be paged in, for a signal from another

thread, or simply for a period of time to elapse (sleep).

Producer-Consumer Problem [RGPV/Dec 2013(10)]

The producer-consumer problem illustrates the need for synchronization in systems where

many processes share a resource. In the problem, two processes share a fixed-size buffer.

One process produces information and puts it in the buffer, while the other process

consumes information from the buffer. These processes do not take turns accessing the

buffer, they both work concurrently. Herein lies the problem. What happens if the producer

tries to put an item into a full buffer? What happens if the consumer tries to take an item

from an empty buffer?

The producer must first create a new widget.

1) Then, it checks to see if the buffer is full. If it is, the producer will put itself to sleep

until the consumer wakes it up. A wakeup will come if the consumer finds the

buffer empty.

2) Next, the producer puts the new widget in the buffer. If the producer goes to sleep

in step (2), it will not wake up until the buffer is empty, so the buffer will never

overflow.

3) Then, the producer checks to see if the buffer is empty. If it is, the producer assumes

that the consumer is sleeping, an so it will wake the consumer. Keep in mind that

between any of these steps, an interrupt might occur, allowing the consumer to run.

The consumer checks to see if the buffer is empty.

1). If so, the consumer will put itself to sleep until the producer wakes it up. A wakeup will

occur if the producer finds the buffer empty after it puts an item into the buffer.

(2) Then, the consumer will remove a widget from the buffer. The consumer will never try to

remove a widget from an empty buffer because it will not wake up until the buffer is full.

(3) If the buffer was full before it removed the widget, the consumer will wake the

producer.

(4) Finally, the consumer will consume the widget. As was the case with the producer, an

interrupt could occur between any of these steps, allowing the producer to run.

Import java.util.Vector;

import java.util.logging.Level;

import java.util.logging.Logger;

/**

 * Java program to solve Producer Consumer problem using wait and notify

 * method in Java. Producer Consumer is also a popular concurrency design pattern.

 *

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

 * @author Javin Paul

 */

public class ProducerConsumerSolution {

 public static void main(String args[]) {

 Vector sharedQueue = new Vector();

 int size = 4;

 Thread prodThread = new Thread(new Producer(sharedQueue, size), Producer);

 Thread consThread = new Thread(new Consumer(sharedQueue, size), Consumer);

 prodThread.start();

 consThread.start();

 }

}

class Producer implements Runnable {

 private final Vector sharedQueue;

 private final int SIZE;

 public Producer(Vector sharedQueue, int size) {

 this.sharedQueue = sharedQueue;

 this.SIZE = size;

 }

 @Override

 public void run() {

 for (int i = 0; i < 7; i++) {

 System.out.println(Produced: + i);

 try {

 produce(i);

 } catch (InterruptedException ex) {

 Logger.getLogger(Producer.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 }

 private void produce(int i) throws InterruptedException {

 //wait if queue is full

 while (sharedQueue.size() == SIZE) {

 synchronized (sharedQueue) {

 System.out.println(Queue is full + Thread.currentThread().getName()

 + is waiting , size: + sharedQueue.size());

 sharedQueue.wait();

 }

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

 }

 //producing element and notify consumers

 synchronized (sharedQueue) {

 sharedQueue.add(i);

 sharedQueue.notifyAll();

 }

 }

}

class Consumer implements Runnable {

 private final Vector sharedQueue;

 private final int SIZE;

 public Consumer(Vector sharedQueue, int size) {

 this.sharedQueue = sharedQueue;

 this.SIZE = size;

 }

 @Override

 public void run() {

 while (true) {

 try {

 System.out.println(Consumed: + consume());

 Thread.sleep(50);

 } catch (InterruptedException ex) {

 Logger.getLogger(Consumer.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

 }

 private int consume() throws InterruptedException {

 //wait if queue is empty

 while (sharedQueue.isEmpty()) {

 synchronized (sharedQueue) {

 System.out.println(Queue is empty + Thread.currentThread().getName()

 + is waiting , size: + sharedQueue.size());

 sharedQueue.wait();

 }

 }

 //Otherwise consume element and notify waiting producer

 synchronized (sharedQueue) {

 sharedQueue.notifyAll();

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

 return (Integer) sharedQueue.remove(0);

 }

 }

}

Output:

Produced: 0

Queue is empty Consumer is waiting , size: 0

Produced: 1

Consumed: 0

Produced: 2

Produced: 3

Produced: 4

Produced: 5

Queue is full Producer is waiting , size: 4

Consumed: 1

Produced: 6

Queue is full Producer is waiting , size: 4

Consumed: 2

Consumed: 3

Consumed: 4

Consumed: 5

Consumed: 6

Queue is empty Consumer is waiting , size: 0

Daemon Thread[RGPV/Dec-2010(5) Dec 2014(2)]]

A daemon thread is one that is supposed to provide a general service in the background as

long as the program is running, but is not part of the essence of the program. Thus, when all

of the non-daemon threads complete, the program is terminated. Conversely, if there are

any non-daemon threads still running, the program doesn’t terminate. There is, for instance,

a non-daemon thread that runs main().

//: c13:SimpleDaemons.java

// Daemon threads don’t prevent the program from ending.

Public class SimpleDaemons extends Thread {

 public SimpleDaemons() {

 setDaemon(true); // Must be called before start()

 start();

 }

 public void run() {

 while(true) {

 try {

 sleep(100);

 } catch (InterruptedException e) {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

 throw new RuntimeException(e);

 }

 System.out.println(this);

 }

 }

 public static void main(String[] args) {

 for(int i = 0; i < 10; i++)

 new SimpleDaemons();

 }

} ///:~

You must set the thread to be a daemon by calling setDaemon() before it is started. In

run(), the thread is put to sleep for a little bit. Once the threads are all started, the program

terminates immediately, before any threads can print themselves, because there are no

non-daemon threads (other than main()) holding the program open. Thus, the program

terminates without printing any output.

You can find out if a thread is a daemon by calling isDaemon(). If a thread is a daemon, then

any threads it creates will automatically be daemons, as the following example

demonstrates:

//: c13:Daemons.java

// Daemon threads spawn other daemon threads.

Import java.io.*;

import com.bruceeckel.simpletest.*;

class Daemon extends Thread {

 private Thread[] t = new Thread[10];

 public Daemon() {

 setDaemon(true);

 start();

 }

 public void run() {

 for(int i = 0; i < t.length; i++)

 t[i] = new DaemonSpawn(i);

 for(int i = 0; i < t.length; i++)

 System.out.println(t[+ i +].isDaemon() =

 + t[i].isDaemon());

 while(true)

 yield();

 }

}

class DaemonSpawn extends Thread {

 public DaemonSpawn(int i) {

 start();

 System.out.println(DaemonSpawn + i + started);

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

 }

 public void run() {

 while(true)

 yield();

 }

}

public class Daemons {

 private static Test monitor = new Test();

 public static void main(String[] args) throws Exception {

 Thread d = new Daemon();

 System.out.println(d.isDaemon() = + d.isDaemon());

 // Allow the daemon threads to

 // finish their startup processes:

 Thread.sleep(1000);

 monitor.expect(new String[] {

 d.isDaemon() = true ,

 DaemonSpawn 0 started ,

 DaemonSpawn 1 started ,

 DaemonSpawn 2 started ,

 DaemonSpawn 3 started ,

 DaemonSpawn 4 started ,

 DaemonSpawn 5 started ,

 DaemonSpawn 6 started ,

 DaemonSpawn 7 started ,

 DaemonSpawn 8 started ,

 DaemonSpawn 9 started ,

 t[0].isDaemon() = true ,

 t[1].isDaemon() = true ,

 t[2].isDaemon() = true ,

 t[3].isDaemon() = true ,

 t[4].isDaemon() = true ,

 t[5].isDaemon() = true ,

 t[6].isDaemon() = true ,

 t[7].isDaemon() = true ,

 t[8].isDaemon() = true ,

 t[9].isDaemon() = true

 }, Test.IGNORE_ORDER + Test.WAIT);

 }

} ///:~

The Daemon thread sets its daemon flag to true and then spawns a bunch of other

threads—which do not set themselves to daemon mode—to show that they are daemons

anyway. Then it goes into an infinite loop that calls yield() to give up control to the other

processes.

There’s nothing to keep the program from terminating once main() finishes its job, since there are

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.linuxtopia.org/online_books/programming_books/thinking_in_java/TIJ315_005.htm

19

nothing but daemon threads running. So that you can see the results of starting all the daemon

threads, the main() thread is put to sleep for a second. Without this, you see only some of the

results from the creation of the daemon threads. (Try sleep() calls of various lengths to see this

behavior.)

S.NO RGPV QUESTIONS Year Marks

Q.1 What is meant by Deamon Thread? Dec 2014 2

Q.2 Explain the Producer Consumer Problem and demonstrate with

the help of program. How this problem can be solved by using

wait() and notify() Methods.

Dec 2013 10

Q-3 Explain the Daemon Thread in brief. Dec-2010 5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

Unit 3

Topic: Exception Handling

Unit 3/Lecture 4

Exception Handling [RGPV/Dec 2009(10)]

A Java exception is an object that describes an exceptional (that is, error) condition that has

occurred in a piece of code. When an exceptional condition arises, an object representing

that exception is created and thrown in the method that caused the error. That method may

choose to handle the exception itself, or pass it on. Either way, at some point, the exception

is caught and processed.

Exceptions can be generated by the Java run-time system, or they can be manually

generated by your code. Exceptions thrown by Java relate to fundamental errors that violate

the rules of the Java language or the constraints of the Java execution environment.

Manually generated exceptions are typically used to report some error condition to the

caller of a method.

Java exception handling is managed via five keywords: try, catch, throw, throws, and finally.

Briefly, here is how they work. Program statements that you want to monitor for exceptions

are contained within a try block. If an exception occurs within the try block, it is thrown.

Your code can catch this exception (using catch) and handle it in some rational manner.

System-generated exceptions are automatically thrown by the Java run-time system. To

manually throw an exception, use the keyword throw. Any exception that is thrown out of a

method must be specified as such by a throws clause. Any code that absolutely must be

executed after a try block completes is put in a finally block.

This is the general form of an exception-handling block:

try {

// block of code to monitor for errors

}

catch (ExceptionType1 exOb) {

// exception handler for ExceptionType1

}

catch (ExceptionType2 exOb) {

// exception handler for ExceptionType2

}

// ...

finally {

// block of code to be executed after try block ends

}

Here, ExceptionType is the type of exception that has occurred.

Before you learn how to handle exceptions in your program, it is useful to see what happens

when you don’t handle them. This small program includes an expression that intentionally

causes a divide-by-zero error:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

class Exc0 {

public static void main(String args[]) {

int d = 0;

int a = 42 / d;

}

}

When the Java run-time system detects the attempt to divide by zero, it constructs a new

exception object and then throws this exception. This causes the execution of Exc0 to

stop, because once an exception has been thrown, it must be caught by an exception

handler and dealt with immediately. In this example, we haven’t supplied any exception

handlers of our own, so the exception is caught by the default handler provided by the Java

run-time system. Any exception that is not caught by your program will ultimately be

processed by the default handler. The default handler displays a string describing the

exception, prints a stack trace from the point at which the exception occurred, and

terminates the program.

Here is the exception generated when this example is executed:

java.lang.ArithmeticException: / by zero

at Exc0.main(Exc0.java:4)

Notice how the class name, Exc0; the method name, main; the filename, Exc0.java; and the

line number, 4, are all included in the simple stack trace. Also, notice that the type of

exception thrown is a subclass of Exception called ArithmeticException, which more

specifically describes what type of error happened. As discussed later in this chapter, Java

supplies several built-in exception types that match the various sorts of run-time errors that

can be generated.

Using Try and Catch

Although the default exception handler provided by the Java run-time system is useful for

debugging, you will usually want to handle an exception yourself. Doing so provides two

benefits. First, it allows you to fix the error. Second, it prevents the program from

automatically terminating. Most users would be confused (to say the least) if your program

stopped. running and printed a stack trace whenever an error occurred! Fortunately, it is

quite easy to prevent this.

To guard against and handle a run-time error, simply enclose the code that you want to

monitor inside a try block. Immediately following the try block, include a catch clause that

specifies the exception type that you wish to catch. To illustrate how easily this can be done,

the following program includes a try block and a catch clause that processes the

ArithmeticException generated by the division-by-zero error:

class Exc2 {

public static void main(String args[]) {

int d, a;

try { // monitor a block of code.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

d = 0;

a = 42 / d;

System.out.println("This will not be printed.");

} catch (ArithmeticException e) { // catch divide-by-zero error

System.out.println("Division by zero.");

}

System.out.println("After catch statement.");

}

}

This program generates the following output:

Division by zero.

After catch statement.

Notice that the call to println() inside the try block is never executed. Once an exception is

thrown, program control transfers out of the try block into the catch block. Put differently,

catch is not called, so execution never returns to the try block from a catch. Thus, the

line This will not be printed. is not displayed. Once the catch statement has executed,

program control continues with the next line in the program following the entire try/catch

mechanism.

Displaying a Description of an Exception

Throwable overrides the toString() method (defined by Object) so that it returns a string

containing a description of the exception. You can display this description in a println()

statement by simply passing the exception as an argument. For example, the catch block in

the preceding program can be rewritten like this:

catch (ArithmeticException e) {

System.out.println("Exception: " + e);

a = 0; // set a to zero and continue

}

When this version is substituted in the program, and the program is run, each divide-byzero

error displays the following message:

Exception: java.lang.ArithmeticException: / by zero

While it is of no particular value in this context, the ability to display a description of an

exception is valuable in other circumstances—particularly when you are experimenting with

exceptions or when you are debugging.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

S.NO RGPV QUESTIONS Year Marks

Q.1 What is an Exception? Explain with example, how exceptions

are handled in Java?

Dec 2010 05

Q-2. Explain Exception Handling in Java. Dec-2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

Unit 3

Topic: Multiple Catch Clauses

Unit 3/ Lecture 5

Multiple catch Clauses

In some cases, more than one exception could be raised by a single piece of code. To handle

this type of situation, you can specify two or more catch clauses, each catching a different

type of exception. When an exception is thrown, each catch statement is inspected in order,

and the first one whose type matches that of the exception is executed. After one catch

statement executes, the others are bypassed, and execution continues after the try/catch

block. The following example traps two different exception types:

// Demonstrate multiple catch statements.

class MultiCatch {

public static void main(String args[]) {

try {

int a = args.length;

System.out.println("a = " + a);

int b = 42 / a;

int c[] = { 1 };

c[42] = 99;

} catch(ArithmeticException e) {

System.out.println("Divide by 0: " + e);

} catch(ArrayIndexOutOfBoundsException e) {

System.out.println("Array index oob: " + e);

}

System.out.println("After try/catch blocks.");

}

}

This program will cause a division-by-zero exception if it is started with no commandline

arguments, since a will equal zero. It will survive the division if you provide a command-line

argument, setting a to something larger than zero. But it will cause an

ArrayIndexOutOfBoundsException, since the int array c has a length of 1, yet the program

attempts to assign a value to c[42].

Here is the output generated by running it both ways:

C:\>java MultiCatch

a = 0

Divide by 0: java.lang.ArithmeticException: / by zero

After try/catch blocks.

C:\>java MultiCatch TestArg

a = 1

Array index oob: java.lang.ArrayIndexOutOfBoundsException:42

After try/catch blocks.

When you use multiple catch statements, it is important to remember that exception

subclasses must come before any of their superclasses. This is because a catch statement

that uses a superclass will catch exceptions of that type plus any of its subclasses. Thus, a

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

subclass would never be reached if it came after its superclass. Further, in Java, unreachable

code is an error.

Throw Statement[RGPV Dec 2014(7)]

However, it is possible for your program to throw an exception explicitly, using the throw

statement. The general form of throw is shown here:

throw ThrowableInstance;

Here, ThrowableInstance must be an object of type Throwable or a subclass of Throwable.

Primitive types, such as int or char, as well as non-Throwable classes, such as String and

Object, cannot be used as exceptions. There are two ways you can obtain a Throwable

object: using a parameter in a catch clause, or creating one with the new operator. The flow

of execution stops immediately after the throw statement; any subsequent statements are

not executed. The nearest enclosing try block is inspected to see if it has a catch statement

that matches the type of exception. If it does find a match, control is transferred to that

statement. If not, then the next enclosing try statement is inspected, and so on. If no

matching catch is found, then the default exception handler halts the program and prints

the stack trace.

Here is a sample program that creates and throws an exception. The handler that catches

the exception rethrows it to the outer handler.

// Demonstrate throw.

class ThrowDemo {

static void demoproc() {

try {

throw new NullPointerException("demo");

} catch(NullPointerException e) {

System.out.println("Caught inside demoproc.");

throw e; // rethrow the exception

}

}

public static void main(String args[]) {

try {

demoproc();

} catch(NullPointerException e) {

System.out.println("Recaught: " + e);

}

}

}

This program gets two chances to deal with the same error. First, main() sets up an

exception

context and then calls demoproc(). The demoproc() method then sets up another

exceptionhandling context and immediately throws a new instance of NullPointerException,

which is caught on the next line. The exception is then rethrown. Here is the resulting

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

output:

Caught inside demoproc.

Recaught: java.lang.NullPointerException: demo

The program also illustrates how to create one of Java’s standard exception objects. Pay

close attention to this line.

Throws Statement

If a method is capable of causing an exception that it does not handle, it must specify this

behavior so that callers of the method can guard themselves against that exception. You do

this by including a throws clause in the method’s declaration. Athrows clause lists the types

of exceptions that a method might throw. This is necessary for all exceptions, except those

of type Error or RuntimeException, or any of their subclasses. All other exceptions that a

method can throw must be declared in the throws clause. If they are not, a compile-time

error will result. This is the general form of a method declaration that includes a throws

clause:

type method-name(parameter-list) throws exception-list

{

// body of method

}

Here, exception-list is a comma-separated list of the exceptions that a method can throw.

Following is an example of an incorrect program that tries to throw an exception that it does

not catch. Because the program does not specify a throws clause to declare this fact, the

program will not compile.

// This program contains an error and will not compile.

class ThrowsDemo {

static void throwOne() {

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

throwOne();

}

}

To make this example compile, you need to make two changes. First, you need to declare

that throwOne() throws IllegalAccessException. Second, main() must define a try/catch

statement that catches this exception.

The corrected example is shown here:

// This is now correct.

class ThrowsDemo {

static void throwOne() throws IllegalAccessException {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

System.out.println("Inside throwOne.");

throw new IllegalAccessException("demo");

}

public static void main(String args[]) {

try {

throwOne();

} catch (IllegalAccessException e) {

System.out.println("Caught " + e);

}

}

}

Here is the output generated by running this example program:

inside throwOne

caught java.lang.IllegalAccessException: demo

Finally Statement[RGPV Dec 2014(7)]

When exceptions are thrown, execution in a method takes a rather abrupt, nonlinear path

that alters the normal flow through the method. Depending upon how the method is coded,

it is even possible for an exception to cause the method to return prematurely. This could

be a problem in some methods. For example, if a method opens a file upon entry and closes

it upon exit, then you will not want the code that closes the file to be bypassed by the

exception-handling mechanism. The finally keyword is designed to address this

contingency.

finally creates a block of code that will be executed after a try/catch block has completed

and before the code following the try/catch block. The finally block will execute whether or

not an exception is thrown. If an exception is thrown, the finally block will execute even if

no catch statement matches the exception. Any time a method is about to return to the

caller from inside a try/catch block, via an uncaught exception or an explicit return

statement, the finally clause is also executed just before the method returns. This can be

useful for closing file handles and freeing up any other resources that might have been

allocated at the beginning of a method with the intent of disposing of them before

returning. The finally clause is optional. However, each try statement requires at least one

catch or a finally clause. Here is an example program that shows three methods that exit in

various ways, none without executing their finally clauses:

// Demonstrate finally.

class FinallyDemo {

// Through an exception out of the method.

static void procA() {

try {

System.out.println("inside procA");

throw new RuntimeException("demo");

} finally {

System.out.println("procA's finally");

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

}

// Return from within a try block.

static void procB() {

try {

System.out.println("inside procB");

return;

} finally {

System.out.println("procB's finally");

}

}

// Execute a try block normally.

static void procC() {

try {

System.out.println("inside procC");

} finally {

System.out.println("procC's finally");

}

}

public static void main(String args[]) {

try {

procA();

} catch (Exception e) {

System.out.println("Exception caught");

}

procB();

procC();

}

}

In this example, procA() prematurely breaks out of the try by throwing an exception. The

finally clause is executed on the way out. procB()’s try statement is exited via a return

statement. The finally clause is executed before procB() returns. In procC(), the try

statement

executes normally, without error. However, the finally block is still executed. REMEMBER If

a finally block is associated with a try, the finally block will be executed upon conclusion of

the try.

Here is the output generated by the preceding program:

inside procA

procA’s finally

Exception caught

inside procB

procB’s finally

inside procC

procC’s finally

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

S.NO RGPV QUESTION YEAR MARKS

Q.1 Define throw & throws in exception

handling. Write a simple code to throw

and handle an exception.

Dec 2014 7

Q.1 Explain the Term Try, Catch and Throw

in Java.

Dec 2009 10

Q-2. Create a Block that is likely to generate

three types of exceptions and

incorporate necessary catch blocks to

catch and handle them appropriately.

Dec 2010 12

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

Unit 3

Topic: Stack-based Execution and Exception Propagation

Unit 3/ Lecture 6

Stack-based Execution and Exception Propagation

An exception in Java is a signal that indicates the occurrence of some important or unexpected

condition during execution. For example, a requested file cannot be found, or an array index is

out of bounds, or a network link failed. Explicit checks in the code for such conditions can easily

result in incomprehensible code. Java provides an exception handling mechanism for

systematically dealing with such error conditions. The exception mechanism is built around the

throw-and-catch paradigm. To throw an exception is to signal that an unexpected error

condition has occurred. To catch an exception is to take appropriate action to deal with the

exception. An exception is caught by an exception handler, and the exception need not be

caught in the same context that it was thrown in. The runtime behavior of the program

determines which exceptions are thrown and how they are caught. The throw-and-catch

principle is embedded in the

try

-

catch

-

finally

construct. Several threads can be executing in the JVM. Each thread has its own runtime

stack(also called the call stack or the invocation stack) that is used to handle execution of

methods. Each element on the stack (called an activation record or a stack frame) corresponds

to a method call. Eachnew call results in a new activation record being pushed on the stack,

which stores all the pertinent information such as storage for the local variables. The method

with the activation record on top of the stack is the one currently executing. When this method

finishes executing, its record is popped from the stack. Execution then continues in the method

corresponding to the activation record which is now uncovered on top of the stack. The methods

on the stack are said to be active , as their execution has not completed. At any given time, the

active methods on a runtime stack comprise what is called the stack trace of a thread's

execution.

The example given below shows a simple program to illustrate method execution. It calculates

the average for a list of integers, given the sum of all the integers and the number of integers. It

uses three methods:

 The method main() which calls the method printAverage() with parameters giving the

total sum of the integers and the total number of integers, (1).

 The method printAverage() in its turn calls the method computeAverage() , (3).

 The method computeAverage() uses integer division to calculate the average and returns

the result, (7).

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

Example

Method Execution

public class Average1 {

public static void main(String[] args) {

printAverage(100,0); // (1)

System.out.println("Exit main()."); // (2)

}

public static void printAverage(int totalSum, int totalNumber) {

int average = computeAverage(totalSum, totalNumber); // (3)

System.out.println("Average = " + // (4)

totalSum + " / " + totalNumber + " = " + average);

System.out.println("Exit printAverage()."); // (5)

}

public static int computeAverage(int sum, int number) {

System.out.println("Computing average."); // (6)

return sum/number; // (7)

}

}

Output of program execution:

Computing average.

Average = 100 / 20 = 5

Exit printAverage().

Exit main().

Execution of above example is illustrated in Figure given below. Each method execution is

shown as a box with the local variables. The box height indicates how long a method is active.

Before the call to the method System.out.println()at (6) in Figure given below, the stack trace

comprises of the three active methods:

main(),printAverage()and computeAverage(). The result 5 from the method computeAverage() is

returned at (7) in Figure given below. The output from the program is in correspondence with

the sequence of method calls in Figure given below.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

If the method call at (1) in above Example

printAverage(100, 20); // (1)

is replaced with

printAverage(100, 0); // (1)

and the program is run again, the output is as follows:

Computing average.

Exception in thread "main" java.lang.ArithmeticException: / by zero

at Average1.computeAverage(Average1.java:18)

at Average1.printAverage(Average1.java:10)

at Average1.main(Average1.java:5)

The Figure given below illustrates the program execution. All goes well until the return

statement at (7) in the method computeAverage () is executed. An error condition occurs in

calculating the expression sum/number, because integer division by 0 is an illegal operation.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

33

Fig. 3.1: Exception Propagation

The above figure illustrates the case where an exception is thrown and the program does not

take any explicit action to deal with the exception. In aboe Figure, execution of the

computeAverage()method is stopped at the point where the exception is thrown. The execution

of the return statement at (7) never gets completed. Since this method does not have any code

to deal with the exception, its execution is likewise terminated abruptly and its activation record

popped. We say that the method completes abruptly. The exception is then offered to the

method whose activation is now on top of the stack (method printAverage ()). This method does

not have any code to deal with the exception either, so its execution completes abruptly. Lines

(4) and (5) in the method printAverage () never get executed. The exception now propagates to

the last active method (method main ()). This does not deal with the exception either. The main()

method also completes abruptly. Line (2) in the main () method never gets executed. Since the

exception is not caught by any of the active methods, it is dealt with by the main thread’s default

exception handler. The default exception handler usually prints the name of the exception, with

an explanatory message, followed by a printout of the stack trace at the time the exception was

thrown. An uncaught exception results in the death of the thread in which the exception

occurred. If an exception is thrown during the evaluation of the left-hand operand of a binary

we dont take any liability for the notes correctness. http://www.rgpvonline.com

34

expression, then the right operand is not evaluated. Similarly if an exception is thrown during the

evaluation of a list of expressions (for example, a list of actual parameters in a method call), then

evaluation of the rest of the list is skipped.

S.NO RGPV QUESTION YEAR MARKS

Q.1 What are the difference between final,

finally & finalize?

Dec 2014 3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

35

Unit 3

Topic: Exception Types

Unit 3/Lecture 7

Exceptions [RGPV Dec 2014(7)]

Exception in Java are objects. All exceptions are derived from the java.lang. Throwable class.

Figure 5.8 shows a partial hierarchy of classes derived from the Throwable class. The two

main subclasses Exception and Error constitute the main categories of throwables, the term

used to refer to both exceptions and errors. Figure 5.8 also shows that not all exception

classes are found in the same package.

The Throwable class provides a String variable that can be set by the subclasses to provide a

detail message. The purpose of the detail message is to provide more information about the

actual exception. All classes of throwables define a one-parameter constructor that takes a

string as the detail message. The class Throwable provides the following common methods

to query an exeception: String getMessage() Returns the detail message. void

printStackTrace() Prints the stack trace on the standard error stream. The stack trace

comprises the method invocation sequence on the runtime stack when the exception was

thrown. The stack trace can also be written to a PrintStream or a PrintWriter by supplying

such a destination as an argument to one of the two overloaded printStackTrace() methods.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

36

String toString() Returns a short description of the exception, which typically comprises the

class name of the exception together with the string returned by the

getMessage() method.

Class Exception

The class Exception represents exceptions that a program would want to be made aware of

during execution. Its subclass RuntimeException represents many common programming

errors that manifest at runtime (see the next subsection). Other subclasses of the Exception

class define other categories of exceptions, for example, I/O-related exceptions

(IOException, FileNotFoundException, EOFException) and GUI-related exceptions

(AWTException).

Class RuntimeException

Runtime exceptions, like out-of-bound array indices (ArrayIndexOutOfBounds

Exception),uninitialized references (NullPointerException), illegal casting of

references(ClassCastException), illegal parameters (IllegalArgumentException), division by

zero (ArithmeticException), and number format problems (NumberFormatException) are all

subclasses of the java.lang.RuntimeException class, which is a subclass of the Exception

class. As these runtime exceptions are usually caused by program bugs that should not

occur in the first place, it is more appropriate to treat them as faults in the program design,

rather than merely catching them during program execution.

Class Error

The subclass AssertionError of the java.lang.Error class is used by the Java assertion facility.

Other subclasses of the java.lang.Error class define exceptions that indicate class linkage

(LinkageError), thread (ThreadDeath), and virtual machine (VirtualMachineError) related

problems. These are invariably never explicitly caught and are usually irrecoverable.

Checked and Unchecked Exceptions

Except for RuntimeException Error, and their subclasses, all exceptions are called checked

exceptions. The compiler ensures that if a method can throw a checked exception, directly

or

indirectly, then the method must explicitly deal with it. The method must either catch the

exception and take the appropriate action, or pass the exception on to its caller (see

Exceptions defined by Errorand RuntimeException classes and their subclasses are known

as Unchecked exceptions, meaning that a method is not obliged to deal with these kinds of

exceptions (shown with grey color in Figure 5.8). They are either irrecoverable (exemplified

by the Error class) and the program should not attempt to deal with them, or they are

programming errors (exemplified by the RuntimeException class) and should be dealt with

as such and not as exceptions.

Defining New Exceptions New exceptions are usually defined to provide fine-grained

categorization of exceptional conditions, instead of using existing exception classes with

descriptive detail messages to differentiate between the conditions. New exceptions usually

extend the Exception class directly or one of its checked subclasses, thereby making the new

exceptions checked. As exceptions are defined by classes, they can declare fields and

methods, thus providing more information as to their cause and remedy when they are

we dont take any liability for the notes correctness. http://www.rgpvonline.com

37

thrown and caught. The super() call can be used to set a detail message in the throwable.

Note that the exception class must be instantiated to create an exception object that can be

thrown and subsequently caught and dealt with. The code below sketches a class definition

for an exception that can include all pertinent information about the exception.

public class EvacuateException extends Exception {

// Data

Date date;

Zone zone;

TransportMode transport;

// Constructor

public EvacuateException(Date d, Zone z, TransportMode t) {

// Call the constructor of the superclass

super("Evacuation of zone " + z);

// ...

}

// Methods

// ...

}

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain various types of exception in Java. June

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

38

Unit 3

Topic: Assertions

Unit 3/ Lecture 8

Assertions

Assertions in Java can be used to document and validate assumptions made about the state

of the program at designated locations in the code. Each assertion contains a boolean

expression that is expected to be true when the assertion is executed. If this assumption is

false, the system throws a special assertion error. The assertion facility uses the exception

handling mechanism to propagate the error. The assertion facility can be enabled or

disabled at runtime. The assertion facility is an invaluable aid in implementing correct

programs (i.e., programs that adhere to their specification). It should not be confused with

the exception handling mechanism that aids in developing robust programs (i.e., programs

that handle unexpected conditions gracefully). Used judiciously, the two mechanisms

facilitate programs that are reliable

Assert Statement and AssertionError Class

The following two forms of the assert statement can be used to specify assertios:

assert <boolean expression> ; // the simple form

assert <boolean expression> :<message expression>

; // the augmented form

If assertions are enabled (see p. 212), the execution of an assert statement proceeds as

shown in Figure 5.13 . The two forms are essentially equivalent to the following code,

respectively:

if (<assertions enabled> && !<boolean expression>) // the simple form throw new

AssertionError();

if (<assertions enabled>&& ! <boolean expression>) // the augmented form throw new

AssertionError(<message expression>

);

Example

Assertions

public class Speed {

public static void main(String[] args) {

Speed objRef = new Speed();

double speed = objRef.calcSpeed(-12.0, 3.0); // (1a)

// double speed = objRef.calcSpeed(12.0, -3.0); // (1b)

// double speed = objRef.calcSpeed(12.0, 2.0); // (1c)

// double speed = objRef.calcSpeed(12.0, 0.0); // (1d)

System.out.println("Speed (km/h): " + speed);

}

/** Requires distance >= 0.0 and time > 0.0 */

we dont take any liability for the notes correctness. http://www.rgpvonline.com

39

private double calcSpeed(double distance, double time) {

assert distance >= 0.0; // (2)

assert time >0.0 : "Time is not a positive value: " + time; // (3)

double speed = distance / time;

assert speed >= 0.0; // (4)

return speed;

}

}

Compiling Assertions

The assertion facility was introduced in J2SE 1.4. At the same time, two new options for the

Javac compiler were introduced for dealing with assertions in the source code. Option -

source 1.4 The javac compiler distributed with the Java SDK v1.4 will only compile

assertions if the option -source 1.4 is used on the command-line:

>javac -source 1.4 Speed.java

This also means that incorrect use of the keyword assert will be flagged as an error

, for example, if assert is used as an identifier.

References:

Book Authr Priority

Java Programming Herbertt Schield 1

Java E Balaguruswamy 2

Java Khalid Mugal 3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

