
Unit 4

Topic:Exploring Java I/O

Unit 4/Lecture 1

File:

Files are a primary source and destination for data within many programs. Although there

are severe restrictions on their use within applets for security reasons, files are still a central

resource for storing persistent and shared information. A directory in Java is treated simply

as a File with one additional property—a list of filenames that can be examined by the list ()

method.

The following constructors can be used to create File objects:

File(String directoryPath)

File(String directoryPath, String filename)

File(File dirObj, String filename)

File(URI uriObj)

File defines many methods that obtain the standard properties of a File object. For example,

getName() returns the name of the file, getParent() returns the name of the parent

directory,

and exists() returns true if the file exists, false if it does not. The File class, however, is not

symmetrical. By this, we mean that there are a few methods that allow you to examine the

properties of a simple file object, but no corresponding function exists to change those

attributes.

The following example demonstrates several of the File methods:

// Demonstrate File.

import java.io.File;

class FileDemo {

static void p(String s) {

System.out.println(s);

}

public static void main(String args[]) {

File f1 = new File("/java/COPYRIGHT");

p("File Name: " + f1.getName());

p("Path: " + f1.getPath());

p("Abs Path: " + f1.getAbsolutePath());

p("Parent: " + f1.getParent());

p(f1.exists() ? "exists" : "does not exist");

p(f1.canWrite() ? "is writeable" : "is not writeable");

p(f1.canRead() ? "is readable" : "is not readable");

p("is " + (f1.isDirectory() ? "" : "not" + " a directory"));

p(f1.isFile() ? "is normal file" : "might be a named pipe");

p(f1.isAbsolute() ? "is absolute" : "is not absolute");

p("File last modified: " + f1.lastModified());

p("File size: " + f1.length() + " Bytes");

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

}

When you run this program, you will see something similar to the following:

File Name: COPYRIGHT

Path: /java/COPYRIGHT

Abs Path: /java/COPYRIGHT

Parent: /java

exists

is writeable

is readable

is not a directory

is normal file

is absolute

File last modified: 812465204000

File size: 695 Bytes

Directories

A directory is a File that contains a list of other files and directories. When you create a File

object and it is a directory, the isDirectory() method will return true. In this case, you can

call list() on that object to extract the list of other files and directories inside. It has two

forms. The first is shown here:

String[] list()

The list of files is returned in an array of String objects. The program shown here illustrates

how to use list() to examine the contents of a directory:

// Using directories.

import java.io.File;

class DirList {

public static void main(String args[]) {

String dirname = "/java";

File f1 = new File(dirname);

if (f1.isDirectory()) {

System.out.println("Directory of " + dirname);

String s[] = f1.list();

for (int i=0; i < s.length; i++) {

File f = new File(dirname + "/" + s[i]);

if (f.isDirectory()) {

System.out.println(s[i] + " is a directory");

} else {

System.out.println(s[i] + " is a file");

}

}

} else {

System.out.println(dirname + " is not a directory");

}

}

we dont take any liability for the notes correctness. http://www.rgpvonline.com

}

Here is sample output from the program. (Of course, the output you see will be different,

based on what is in the directory.)

Directory of /java

bin is a directory

lib is a directory

demo is a directory

COPYRIGHT is a file

README is a file

index.html is a file

include is a directory

src.zip is a file

src is a directory

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Exploring Java I/O(Byte Stream Classes)

Unit 4/Lecture 2

The Byte Stream[RGPV Dec 2014(2)]

The byte stream classes provide a rich environment for handling byte-oriented I/O. A byte

stream can be used with any type of object, including binary data. This versatility makes

byte streams important to many types of programs. Since the byte stream classes are

topped by InputStream and OutputStream.

InputStream

InputStream is an abstract class that defines Java’s model of streaming byte input. It

implements the Closeable interface. Most of the methods in this class will throw an

IOException on error conditions. (The exceptions are mark () and markSupported (). Table

4.1 shows the methods in InputStream.

Table 4.1: The Methods defined by InputStream

OutputStream

OutputStream is an abstract class that defines streaming byte output. It implements the

Closeable and Flushable interfaces. Most of the methods in this class return void and throw

an IOException in the case of errors. (The exceptions are mark () and markSupported ().

Table 4.2 shows the methods in OutputStream.

Table 4.2: The Methods defined by OutputStream

we dont take any liability for the notes correctness. http://www.rgpvonline.com

FileInputStream [RGPV/Dec-2013(8), Dec-2014(2)]

The FileInputStream class creates an InputStream that you can use to read bytes from a file.

Its two most common constructors are shown here:

FileInputStream(String filepath)

FileInputStream(File fileObj)

Either can throw a FileNotFoundException. Here, filepath is the full path name of a file, and

fileObj is a File object that describes the file. The following example creates two

FileInputStreams that use the same disk file and each of the two constructors:

FileInputStream f0 = new FileInputStream("/autoexec.bat")

File f = new File("/autoexec.bat");

FileInputStream f1 = new FileInputStream(f);

Although the first constructor is probably more commonly used, the second allows us to

closely examine the file using the File methods, before we attach it to an input stream.

When a FileInputStream is created, it is also opened for reading. FileInputStream overrides

six of the methods in the abstract class InputStream. The mark() and reset() methods are

not overridden, and any attempt to use reset() on a FileInputStream will generate an

IOException.

The next example shows how to read a single byte, an array of bytes, and a subrange array

of bytes. It also illustrates how to use available() to determine the number of bytes

remaining, and how to use the skip() method to skip over unwanted bytes. The program

reads its own source file, which must be in the current directory.

// Demonstrate FileInputStream.

import java.io.*;

class FileInputStreamDemo {

public static void main(String args[]) throws IOException {

int size;

InputStream f =

new FileInputStream("FileInputStreamDemo.java");

System.out.println("Total Available Bytes: " +

(size = f.available()));

int n = size/40;

System.out.println("First " + n +

" bytes of the file one read() at a time");

for (int i=0; i < n; i++) {

System.out.print((char) f.read());

}

System.out.println("\nStill Available: " + f.available());

we dont take any liability for the notes correctness. http://www.rgpvonline.com

System.out.println("Reading the next " + n +

" with one read(b[])");

byte b[] = new byte[n];

if (f.read(b) != n) {

System.err.println("couldn't read " + n + " bytes.");

}

System.out.println(new String(b, 0, n));

System.out.println("\nStill Available: " + (size = f.available()));

System.out.println("Skipping half of remaining bytes with skip()");

f.skip(size/2);

System.out.println("Still Available: " + f.available());

System.out.println("Reading " + n/2 + " into the end of array");

if (f.read(b, n/2, n/2) != n/2) {

System.err.println("couldn't read " + n/2 + " bytes.");

}

System.out.println(new String(b, 0, b.length));

System.out.println("\nStill Available: " + f.available());

f.close();

}

}

Here is the output produced by this program:

Total Available Bytes: 1433

First 35 bytes of the file one read() at a time

// Demonstrate FileInputStream.

im

Still Available: 1398

Reading the next 35 with one read(b[])

port java.io.*;

class FileInputS

Still Available: 1363

Skipping half of remaining bytes with skip()

Still Available: 682

Reading 17 into the end of array

port java.io.*;

read(b) != n) {

S

Still Available: 665

FileOutputStream

FileOutputStream creates an OutputStream that you can use to write bytes to a file. Its

most commonly used constructors are shown here:

FileOutputStream(String filePath)

FileOutputStream(File fileObj)

FileOutputStream(String filePath, boolean append)

FileOutputStream(File fileObj, boolean append)

The following example creates a sample buffer of bytes by first making a String and then

using the getBytes() method to extract the byte array equivalent. It then creates three files.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The first, file1.txt, will contain every other byte from the sample. The second, file2.txt, will

contain the entire set of bytes. The third and last, file3.txt, will contain only the last

quarter.

// Demonstrate FileOutputStream.

import java.io.*;

class FileOutputStreamDemo {

public static void main(String args[]) throws IOException {

String source = "Now is the time for all good men\n"

+ " to come to the aid of their country\n"

+ " and pay their due taxes.";

byte buf[] = source.getBytes();

OutputStream f0 = new FileOutputStream("file1.txt");

for (int i=0; i < buf.length; i += 2) {

f0.write(buf[i]);

}

f0.close();

OutputStream f1 = new FileOutputStream("file2.txt");

f1.write(buf);

f1.close();

OutputStream f2 = new FileOutputStream("file3.txt");

f2.write(buf,buf.length-buf.length/4,buf.length/4);

f2.close();

}

}

Here are the contents of each file after running this program. First, file1.txt:

Nwi h iefralgo e

t oet h i ftercuty n a hi u ae.

Next, file2.txt:

Now is the time for all good men

to come to the aid of their country

and pay their due taxes.

Finally, file3.txt:

nd pay their due taxes.

S.NO RGPV QUESTIONS Year Marks

Q.1 What is stream? Explain types of stream and classes of the

stream

Dec 2014 2

Q.2 Explain the Constructors of FileInputStream class. Write a

program to read a text file stored in the same directory as the

program, reverse its contents and display them on the screen.

Dec

2013,

Dec 2014

08,7

Q-3 Explain Java Input and Output Stream. Dec 2009 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Exploring Java I/O

Unit 4/Lecture 3

PrintStream

The PrintStream class provides all of the output capabilities we have been using from the

System file handle, System.out, since the beginning of the book. This makes PrintStream

one of Java’s most often used classes. It implements the Appendable, Closeable, and

Flushable interfaces. PrintStream defines several constructors. The ones shown next have

been specified from the start:

PrintStream(OutputStream outputStream)

PrintStream(OutputStream outputStream, boolean flushOnNewline)

PrintStream(OutputStream outputStream, boolean flushOnNewline,

String charSet)

RandomAccessFile

RandomAccessFile encapsulates a random-access file. It is not derived from InputStream or

OutputStream. Instead, it implements the interfaces DataInput and DataOutput, which

define the basic I/O methods. It also implements the Closeable interface. RandomAccessFile

is special because it supports positioning requests—that is, you can position the file pointer

within the file. It has these two constructors:

RandomAccessFile(File fileObj, String access) throws FileNotFoundException

RandomAccessFile(String filename, String access) throws FileNotFoundException

In the first form, fileObj specifies the name of the file to open as a File object. In the second

form, the name of the file is passed in filename. In both cases, access determines what type

of file access is permitted. If it is ͞r͟, then the file can be read, but not written. If it is ͞rw͟,

then the file is opened in read-write mode. If it is ͞rws͟, the file is opened for read-write

operations and every change to the file’s data or metadata will be immediately written to

the physical device. If it is ͞rwd͟, the file is opened for read-write operations and every

change to the file’s data will be immediately written to the physical device.

The method seek(), shown here, is used to set the current position of the file pointer within

the file:

void seek(long newPos) throws IOException

Here, newPos specifies the new position, in bytes, of the file pointer from the beginning of

the file. After a call to seek(), the next read or write operation will occur at the new file

position. RandomAccessFile implements the standard input and output methods, which you

can use to read and write to random access files. It also includes some additional methods.

One is setLength(). It has this signature:

void setLength(long len) throws IOException

we dont take any liability for the notes correctness. http://www.rgpvonline.com

This method sets the length of the invoking file to that specified by len. This method can be

used to lengthen or shorten a file. If the file is lengthened, the added portion is undefined.

DataOutputStream and DataInputStream [RGPV/Dec-2010(5)]

DataOutputStream and DataInputStream enable you to write or read primitive data to or

from a stream. They implement the DataOutput and DataInput interfaces, respectively.

These interfaces define methods that convert primitive values to or from a sequence of

bytes. These streams make it easy to store binary data, such as integers or floating-point

values, in a file. Each is examined here.

DataOutputStream extends FilterOutputStream, which extends OutputStream.

DataOutputStream defines the following constructor:

DataOutputStream(OutputStream outputStream)

Here, outputStream specifies the output stream to which data will be written.

DataOutputStream supports all of the methods defined by it superclasses. However, it is the

methods defined by the DataOutput interface, which it implements, that make it

interesting. DataOutput defines methods that convert values of a primitive type into a byte

sequence and then writes it to the underlying stream. Here is a sampling of these methods:

final void writeDouble(double value) throws IOException

final void writeBoolean(boolean value) throws IOException

final void writeInt(int value) throws IOException

Here, value is the value written to the stream.

DataInputStream is the complement of DataOuputStream. It extends FilterInputStream,

which extends InputStream, and it implements the DataInput interface. Here is its only

constructor:

DataInputStream(InputStream inputStream)

Here, inputStream specifies the input stream from which data will be read.

Like DataOutputStream, DataInputStream supports all of the methods of its superclasses,

but it is the methods defined by the DataInput interface that make it unique. These

methods read a sequence of bytes and convert them into values of a primitive type. Here is

a sampling

of these methods:

double readDouble() throws IOException

boolean readBoolean() throws IOException

int readInt() throws IOException

The following program demonstrates the use of DataOutputStream and DataInputStream:

import java.io.*;

class DataIODemo {

public static void main(String args[])

we dont take any liability for the notes correctness. http://www.rgpvonline.com

throws IOException {

FileOutputStream fout = new FileOutputStream("Test.dat");

DataOutputStream out = new DataOutputStream(fout);

out.writeDouble(98.6);

out.writeInt(1000);

out.writeBoolean(true);

out.close();

FileInputStream fin = new FileInputStream("Test.dat");

DataInputStream in = new DataInputStream(fin);

double d = in.readDouble();

int i = in.readInt();

boolean b = in.readBoolean();

System.out.println("Here are the values: " +

d + " " + i + " " + b);

in.close();

}

}

The output is shown here:

Here are the values: 98.6 1000 true

S.NO RGPV QUESTIONS Year Marks

Q.1 What are the difference between DataOutputStream and

PrintStream.

Dec 2010 05

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Exploring Java I/O (Character Streams)

Unit 4/Lecture 4

Character Streams [RGPV/Dec 2012(10)]

While the byte stream classes provide sufficient functionality to handle any type of I/O

operation, they cannot work directly with Unicode characters. Since one of the main

purposes

of Java is to support the ͞write once, run anywhere͟ philosophy, it was necessary to include

direct I/O support for characters. In this section, several of the character I/O classes are

discussed

Reader

Reader is an abstract class that defines Java’s model of streaming character input. It

implements the Closeable and Readable interfaces. All of the methods in this class (except

for markSupported()) will throw an IOException on error conditions.

Writer

Writer is an abstract class that defines streaming character output. It implements the

Closeable, Flushable, and Appendable interfaces. All of the methods in this class throw an

IOException in the case of errors. Table 19-4 shows a synopsis of the methods in Writer.

FileReader

The FileReader class creates a Reader that you can use to read the contents of a file. Its two

most commonly used constructors are shown here:

FileReader(String filePath)

FileReader(File fileObj)

Either can throw a FileNotFoundException. Here, filePath is the full path name of a file, and

fileObj is a File object that describes the file.

The following example shows how to read lines from a file and print these to the standard

output stream. It reads its own source file, which must be in the current directory.

// Demonstrate FileReader.

import java.io.*;

class FileReaderDemo {

public static void main(String args[]) throws IOException {

FileReader fr = new FileReader("FileReaderDemo.java");

BufferedReader br = new BufferedReader(fr);

String s;

while((s = br.readLine()) != null) {

System.out.println(s);

}

fr.close();

we dont take any liability for the notes correctness. http://www.rgpvonline.com

}

}

FileWriter

FileWriter creates a Writer that you can use to write to a file. Its most commonly used

constructors are shown here:

FileWriter(String filePath)

FileWriter(String filePath, boolean append)

FileWriter(File fileObj)

FileWriter(File fileObj, boolean append)

They can throw an IOException. Here, filePath is the full path name of a file, and fileObj is a

File

object that describes the file. If append is true, then output is appended to the end of the

file.

Creation of a FileWriter is not dependent on the file already existing. FileWriter will create

the file before opening it for output when you create the object. In the case where you

attempt to open a read-only file, an IOException will be thrown.

The following example is a character stream version of an example shown earlier when

FileOutputStream was discussed. This version creates a sample buffer of characters by first

making a String and then using the getChars() method to extract the character array

equivalent. It then creates three files. The first, file1.txt, will contain every other character

from the sample. The second, file2.txt, will contain the entire set of characters. Finally, the

third, file3.txt, will contain only the last quarter.

// Demonstrate FileWriter.

import java.io.*;

class FileWriterDemo {

public static void main(String args[]) throws IOException {

String source = "Now is the time for all good men\n"

+ " to come to the aid of their country\n"

+ " and pay their due taxes.";

char buffer[] = new char[source.length()];

source.getChars(0, source.length(), buffer, 0);

FileWriter f0 = new FileWriter("file1.txt");

for (int i=0; i < buffer.length; i += 2) {

f0.write(buffer[i]);

}

f0.close();

FileWriter f1 = new FileWriter("file2.txt");

f1.write(buffer);

f1.close();

FileWriter f2 = new FileWriter("file3.txt");

f2.write(buffer,buffer.length-buffer.length/4,buffer.length/4);

f2.close();

}

BufferedReader

we dont take any liability for the notes correctness. http://www.rgpvonline.com

BufferedReader improves performance by buffering input. It has two constructors:

BufferedReader(Reader inputStream)

BufferedReader(Reader inputStream, int bufSize)

The first form creates a buffered character stream using a default buffer size. In the second,

the size of the buffer is passed in bufSize.

As is the case with the byte-oriented stream, buffering an input character stream also

provides the foundation required to support moving backward in the stream within the

available buffer. To support this, BufferedReader implements the mark() and reset()

methods, and BufferedReader.markSupported() returns true. The following example

reworks the BufferedInputStream example, shown earlier, so that it uses a BufferedReader

character stream rather than a buffered byte stream. As before, it uses mark() and reset()

methods to parse a stream for the HTML entity reference for the copyright symbol. Such a

reference begins with an ampersand (&) and ends with a semicolon (;) without any

intervening whitespace. The sample input has two ampersands, to show the case where the

reset() happens and where it does not. Output is the same as that shown earlier.

// Use buffered input.

import java.io.*;

class BufferedReaderDemo {

public static void main(String args[]) throws IOException {

String s = "This is a © copyright symbol " +

"but this is © not.\n";

char buf[] = new char[s.length()];

s.getChars(0, s.length(), buf, 0);

CharArrayReader in = new CharArrayReader(buf);

BufferedReader f = new BufferedReader(in);

int c;

boolean marked = false;

while ((c = f.read()) != -1) {

switch(c) {

case '&':

if (!marked) {

f.mark(32);

marked = true;

} else {

marked = false;

}

break;

case ';':

if (marked) {

marked = false;

System.out.print("(c)");

} else

System.out.print((char) c);

break;

case ' ':

we dont take any liability for the notes correctness. http://www.rgpvonline.com

if (marked) {

marked = false;

f.reset();

System.out.print("&");

} else

System.out.print((char) c);

break;

default:

if (!marked)

System.out.print((char) c);

break;

}

}

}

}

BufferedWriter

A BufferedWriter is a Writer that buffers ouput. Using a BufferedWriter can increase

performance by reducing the number of times data is actually physically written to the

output stream.

ABufferedWriter has these two constructors:

BufferedWriter(Writer outputStream)

BufferedWriter(Writer outputStream, int bufSize)

The first form creates a buffered stream using a buffer with a default size. In the second, the

size of the buffer is passed in bufSize.

S.NO RGPV QUESTIONS Year Marks

Q.1 What are the abstract classes for handling byte stream and

character stream? Explain.

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Exploring Java I/O

Unit 4/Lecture 5

PrintWriter

PrintWriter is essentially a character-oriented version of PrintStream. It implements the

Appendable, Closeable, and Flushable interfaces. PrintWriter has several constructors. The

following have been supplied by PrintWriter from the start:

PrintWriter(OutputStream outputStream)

PrintWriter(OutputStream outputStream, boolean flushOnNewline)

PrintWriter(Writer outputStream)

PrintWriter(Writer outputStream, boolean flushOnNewline)

Here, outputStream specifies an open OutputStream that will receive output. The

flushOnNewline parameter controls whether the output buffer is automatically flushed

every time println(), printf(), or format() is called. If flushOnNewline is true, flushing

automatically takes place. If false, flushing is not automatic. Constructors that do not specify

the flushOnNewline parameter do not automatically flush.

These allow a PrintWriter to be created from a File object or by specifying the name of a

file.

In either case, the file is automatically created. Any preexisting file by the same name is

destroyed. Once created, the PrintWriter object directs all output to the specified file. You

can specify a character encoding by passing its name in charSet.

PrintWriter supports the print() and println() methods for all types, including Object. If an

argument is not a primitive type, the PrintWriter methods will call the object’s toString()

method and then output the result.

PrintWriter also supports the printf () method. It works the same way it does in the

PrintStream class described earlier: it allows you to specify the precise format of the data.

Here is how printf() is declared in PrintWriter:

PrintWriter printf(String fmtString, Object ... args)

PrintWriter printf(Locale loc, String fmtString, Object ... args)

The first version writes args to standard output in the format specified by fmtString, using

the

default locale. The second lets you specify a locale. Both return the invoking PrintWriter.

The format () method is also supported. It has these general forms:

PrintWriter format(String fmtString, Object ... args)

PrintWriter format(Locale loc, String fmtString, Object ... args)

It works exactly like printf().

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Serialization [RGPV/Dec-2010(10),Dec-2014(2)]

Serialization is the process of writing the state of an object to a byte stream. This is useful

when you want to save the state of your program to a persistent storage area, such as a file.

At a later time, you may restore these objects by using the process of deserialization.

Serialization is also needed to implement Remote Method Invocation (RMI). RMI allows a

Java object on one machine to invoke a method of a Java object on a different machine. An

object may be supplied as an argument to that remote method. The sending machine

serializes the object and transmits it. The receiving machine deserializes it.

An overview of the interfaces and classes that support serialization follows.

Serializable

Only an object that implements the Serializable interface can be saved and restored by the

serialization facilities. The Serializable interface defines no members. It is simply used to

indicate that a class may be serialized. If a class is serializable, all of its subclasses are also

serializable. Variables that are declared as transient are not saved by the serialization

facilities. Also, static variables are not saved.

Externalizable

The Java facilities for serialization and deserialization have been designed so that much of

the work to save and restore the state of an object occurs automatically. However, there are

cases in which the programmer may need to have control over these processes. For

example, it may be desirable to use compression or encryption techniques. The

Externalizable interface is designed for these situations.

The Externalizable interface defines these two methods:

void readExternal(ObjectInput inStream)

throws IOException, ClassNotFoundException

void writeExternal(ObjectOutput outStream)

throws IOException

In these methods, inStream is the byte stream from which the object is to be read, and

outStream is the byte stream to which the object is to be written.

S.NO RGPV QUESTIONS Year Marks

Q.1 What is Serialization? Write a program in Java for Serialization in

an Object.

Dec 2012

Dec 2014

10,2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Exploring Java I/O

Unit 4/Lecture 6

ObjectOutput

The ObjectOutput interface extends the DataOutput interface and supports object

serialization. It defines the methods shown in Table 19-6. Note especially the writeObject()

method. This is called to serialize an object.

All of these methods will throw an IOException on error conditions.

ObjectOutputStream

The ObjectOutputStream class extends the OutputStream class and implements the

ObjectOutput interface. It is responsible for writing objects to a stream. A constructor of

this class is ObjectOutputStream(OutputStream outStream) throws IOException The

argument outStream is the output stream to which serialized objects will be written. Several

commonly used methods in this class are shown in The table given below. They will throw

an IOException on error conditions.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

ObjectInput

The ObjectInput interface extends the DataInput interface and defines the methods shown

in Table 19-8. It supports object serialization. Note especially the readObject() method. This

is called to deserialize an object. All of these methods will throw an IOException on error

conditions. The readObject() method can also throw ClassNotFoundException.

ObjectInputStream

The ObjectInputStream class extends the InputStream class and implements the

ObjectInput interface. ObjectInputStream is responsible for reading objects from a stream.

Aconstructor of this class is

ObjectInputStream(InputStream inStream)

throws IOException

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The argument inStream is the input stream from which serialized objects should be read.

Several commonly used methods in this class are shown in Table given below. They will

throw an IOException on error conditions. The readObject() method can also throw

ClassNotFoundException. There is also an inner class to ObjectInputStream called GetField.

It facilitates the reading of persistent fields, and its use is beyond the scope of this book.

A Serialization Example

The following program illustrates how to use object serialization and deserialization. It

begins

by instantiating an object of class MyClass. This object has three instance variables that are

of

types String, int, and double. This is the information we want to save and restore.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

import java.io.*; [RGPV/Dec-2010(10)]

public class SerializationDemo {

public static void main(String args[]) {

// Object serialization

try {

MyClass object1 = new MyClass("Hello", -7, 2.7e10);

System.out.println("object1: " + object1);

FileOutputStream fos = new FileOutputStream("serial");

ObjectOutputStream oos = new ObjectOutputStream(fos);

oos.writeObject(object1);

oos.flush();

oos.close();

}

catch(IOException e) {

System.out.println("Exception during serialization: " + e);

System.exit(0);

}

// Object deserialization

try {

MyClass object2;

FileInputStream fis = new FileInputStream("serial");

ObjectInputStream ois = new ObjectInputStream(fis);

object2 = (MyClass)ois.readObject();

ois.close();

System.out.println("object2: " + object2);

}

catch(Exception e) {

System.out.println("Exception during deserialization: " + e);

System.exit(0);

}

}

}

class MyClass implements Serializable {

String s;

int i;

double d;

public MyClass(String s, int i, double d) {

this.s = s;

this.i = i;

this.d = d;

}

public String toString() {

return "s=" + s + "; i=" + i + "; d=" + d;

}

}

This program demonstrates that the instance variables of object1 and object2 are identical.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The output is shown here:

object1: s=Hello; i=-7; d=2.7E10

object2: s=Hello; i=-7; d=2.7E10

S.NO RGPV QUESTIONS Year Marks

Q.1 What is Serialization? Write a program in Java for Serialization in

an Object.

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Java Database Connectivity (JDBC)

Unit 4/Lecture 7

What is JDBC [RGPV/June 2011(8),June 2014(7)]

JDBC (Java Database Connectiveity) is an API (Application Programming Interface), That is, a

collection of classes and interfaces.

• JDBC is used for accessiŶg ;ŵaiŶlyͿ databases from Java applications.

• IŶforŵatioŶ is traŶsferred froŵ relations to objects and vice-versa.

– databases optimized for searching/indexing

– objects optimized for engineering/flexibility

JDBC Architecture

The architecture of JDBC is given below, the components of this architecture is described

below.

DriverManager

 Loads JDBC driver into JVM

 Used to obtain connections to a DataSource

Connection

 Represents a connection with a DataSource

 Used to create Statement, PreparedStatement and

 CallableStatement objects.

Statement

 Represents a static SQL statement.

 Can be used to retrieve ResultSet objects.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

PreparedStatement

 Higher performance alternative to Statement object,

 represents a precompiled SQL statement.

CallableStatement

 Represents a stored procedure. Can be used to execute stored procedures in a RDBMS

which

supports them.

 ResultSet

 Represents a database result set generated by using a SELECT SQL statement.

 SQLException

 An exception class which encapsulates database base access errors.

 DataSource

 Abstracts a data source. This object can be used in place of DriverManager to efficiently

obtain data source connections

There are seven steps for the Java Database connectivity.

 Load the driver

 Define the connection URL

 Establish the connection

 Create a Statement object

 Execute a query using the Statement

 Close the connection

Step-One Loading the Driver

The driver we are using will need to be registered with the JDBC DriverManager Typically done

via loading the class directly.

Class.forName(͞com.oracle.jdbc.OracleDriver͟);

This method may throw a ClassNotFoundException, so we must wrap it in a try/catch block

try {

Class.forName("com.mysql.jdbc.Driver");

} catch (ClassNotFoundException e) {

System.err.println("Failed to load the JDBC driver");

}

Step Two Define the Connection URL

JDBC drivers use a JDBC URL to identify and connect to a given database Typically specify

 Driver name

 Machine to connect to

 Database name

 Username (typically optional)

 Password (typically optional)

 General format like so:

jdbc:driver:databasename

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Step-three Connecting to the Database

To connect to the database we need to get a connection off of the DriverManager Connection

conn = DriverManager.getConnection("url", "user", "password");

We should also take some care to close the connection when we are done with it to free up

resources

Example.

Connection connection = null;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://127.0.0.1:3306/test","username","password");

} catch (SQLException e) {

e.printStackTrace();

} catch (ClassNotFoundException e) {

System.err.println("Failed to load the JDBC driver");

} finally {

if (connection != null) {

try {

connection.close();

} catch (SQLException e) {

System.err.println("Failed to close the connection.");

}

}

}

Statement- Four Creating a Statement

 There are 3 different types of statements that are supported Statement

A basic SQL statement

 PreparedStatement

A precompiled SQL statement

 CallableStatement

Access to stored procedures

 Just like a connection, we should close the statement when we are done with it.

Example

Connection connection = null;

Statement statement = null;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://127.0.0.1:3306/test","username","password");

statement = connection.createStatement();

} catch (SQLException e) {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

e.printStackTrace();

} catch (ClassNotFoundException e) {

System.err.println("Failed to load the JDBC driver");

}

// continued on next slide

// continued from previous slide

finally {

if (statement != null) {

try {

statement.close();

} catch (SQLException e) {

System.err.println("Failed to close the statement.");

}

}

if (connection != null) {

try {

connection.close();

} catch (SQLException e) {

System.err.println("Failed to close the connection.");

}

}

}

Step Five Obtaining the Resultset. [RGPV/Dec 2011(12)]

We can get a ResultSet back which represents the results of our query.

A ResultSet is returned from executing a query

statement.executeQuery("select * from people");

You can think of a result set as an iterator over a collection of results that you can walk through

 next() – returns a boolean if there is more data and advances to the next item in the collection

There are a lot of methods to get data out of the results set in the following format

 getType(int colNum)

 getType(String colName)

 i.e. String name = rs.getString(͞first͟);

Connection connection = null;

Statement statement = null;

try {

Class.forName("com.mysql.jdbc.Driver");

connection = DriverManager.getConnection(

"jdbc:mysql://127.0.0.1:3306/test","username","password");

statement = connection.createStatement();

ResultSet results =

statement.executeQuery("select * from people");

while (results != null && results.next()) {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

System.out.println(results.getString("first") + " " +

results.getString("last"));

}

} catch (SQLException e) {

e.printStackTrace();

} catch (ClassNotFoundException e) {

System.err.println("Failed to load the JDBC driver");

} // continued on next slide

// continued from previous slide

finally {

if (statement != null) {

try {

statement.close();

} catch (SQLException e) {

System.err.println("Failed to close the statement.");

}

}

if (connection != null) {

try {

connection.close();

} catch (SQLException e) {

System.err.println ("Failed to close the connection.");

}

}

}

Step Six Closing Connection

We have to remember to: close Connections, Statements, Prepared Statements and Result Sets.

With following statements.

con.close();

stmt.close();

pstmt.close();

rs.close()

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain the Architecture of JDBC June 2011

June 2013

08,7

Q-2 How can we move the cursor in movable resultset? June 2011 12

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Unit 4

Topic: Java Database Connectivity (JDBC) ODBC Bridge

Unit 4/Lecture 8

JDBC-ODBC Bride [RGPV/Dec 2009(10) Dec 20012(7), Dec 2014(7]

A JDBC driver is a software component enabling a Java application to interact with a

database.
[1]

 JDBC drivers are analogous to ODBC drivers, ADO.NET data providers, and OLE

DB providers.

To connect with individual databases, JDBC (the Java Database Connectivity API) requires

drivers for each database. The JDBC driver gives out the connection to the database and

implements the protocol for transferring the query and result between client and database.

JDBC technology drivers fit into one of four categories.

1. JDBC-ODBC bridge

2. Native-API Driver

3. Network-Protocol Driver(MiddleWare Driver)

4. Database-Protocol Driver(Pure Java Driver)

The JDBC type 1 driver, also known as the JDBC-ODBC bridge, is a database driver

implementation that employs the ODBC driver to connect to the database. The driver

converts JDBC method calls into ODBC function calls.

The driver is platform-dependent as it makes use of ODBC which in turn depends on native

libraries of the underlying operating system the JVM is running upon. Also, use of this driver

leads to other installation dependencies; for example, ODBC must be installed on the

computer having the driver and the database must support an ODBC driver. The use of this

driver is discouraged if the alternative of a pure-Java driver is available. The other

implication is that any application using a type 1 driver is non-portable given the binding

between the driver and platform. This technology isn’t suitable for a high-transaction

environment. Type 1 drivers also don’t support the complete Java command set and are

limited by the functionality of the ODBC driver.

Sun provides a JDBC-ODBC Bridge driver: sun.jdbc.odbc.JdbcOdbcDriver. This driver is native

code and not Java, and is closed source.

If a driver has been written so that loading it causes an instance to be created and also calls

DriverManager.registerDriver with that instance as the parameter (as it should do), then it is

in the DriverManager’s list of drivers and available for creating a connection.

It may sometimes be the case that more than one JDBC driver is capable of connecting to a

given URL. For example, when connecting to a given remote database, it might be possible

to use a JDBC-ODBC bridge driver, a JDBC-to-generic-network-protocol driver, or a driver

supplied by the database vendor. In such cases, the order in which the drivers are tested is

significant because the DriverManager will use the first driver it finds that can successfully

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Database
http://en.wikipedia.org/wiki/JDBC_driver#cite_note-1
http://en.wikipedia.org/wiki/ODBC_driver
http://en.wikipedia.org/wiki/ADO.NET_data_provider
http://en.wikipedia.org/wiki/OLE_DB_provider
http://en.wikipedia.org/wiki/OLE_DB_provider
http://en.wikipedia.org/wiki/Java_Database_Connectivity
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Database_Connection
http://en.wikipedia.org/wiki/Protocol_%28computing%29
http://en.wikipedia.org/wiki/Client_%28computing%29

connect to the given URL.

First the DriverManager tries to use each driver in the order it was registered. (The drivers

listed in jdbc.drivers are always registered first.) It will skip any drivers that are untrusted

code unless they have been loaded from the same source as the code that is trying to open

the connection.

It tests the drivers by calling the method Driver.connect on each one in turn, passing them

the URL that the user originally passed to the method DriverManager.getConnection. The

first driver that recognizes the URL makes the connection.

A type 2 driver, on the other hand, is a Java class that calls a native database API (for

example, client APIs for Oracle or Sybase). These are not very different from type 1 drivers;

they still use an external, non-Java bridge to work with the database.

Type 3 drivers are all Java and use a network transport to communicate with a database

server using a database-independent protocol. Since many database vendors offer this

network service, a type 3 driver is a flexible option. The driver can be pure Java and still

interface with a proprietary database format.

S.NO RGPV QUESTIONS Year Marks

Q.1 What is JDBC? Explain JDBC-ODBC bridge? June 2014

June 2012

7,7

Q.2 Explain JDBC-ODBC Bridge and role of the Driver

Manager.

Dec 2009 10

BOOK AUTHOR PRIORITY

The Complete Reference Java 2 Naughton & Schildt 1

Java- How to Program Deitel 2

Core Java 2͟ (Vol I & II) Horstmann & Cornell 3

Java 2.0 lvan Bayross 4

Beginning Java 2, JDK 5 Ed. Ivor Horton’s 5

Java Programming for the

absolute beginners

Russell 6

we dont take any liability for the notes correctness. http://www.rgpvonline.com

