
1

Unit 5

Topic: Java Networking (Networking Basics)

Unit 5/Lecture 1

Networking Basics

At the core of Java’s networking support is the concept of a socket. At the core of Java’s

networking support is the concept of a socket. A socket identifies an endpoint in a network. The

socket paradigm was part of the 4.2BSD Berkeley UNIX release in the early 1980s. Because of

this, the term Berkeley socket is also used. Sockets are at the foundation of modern networking

because a socket allows a single computer to serve many different clients at once, as well as to

serve many different types of information. This is accomplished through the use of a port,

which is a numbered socket on a particular machine. A server process is said to listen to a

port until a client connects to it. A server is allowed to accept multiple clients connected to the

same port number, although each session is unique. To manage multiple client connections, a

server process must be multithreaded or have some other means of multiplexing the

simultaneous I/O.

Socket communication takes place via a protocol. Internet Protocol (IP) is a low-level routing

protocol that breaks data into small packets and sends them to an address across a network,

which does not guarantee to deliver said packets to the destination. Transmission Control

Protocol (TCP) is a higher-level protocol that manages to robustly string together these packets,

sorting and retransmitting them as necessary to reliably transmit data. A third protocol, User

Datagram Protocol (UDP), sits next to TCP and can be used directly to support fast,

connectionless, unreliable transport of packets.

Once a connection has been established, a higher-level protocol ensues, which is dependent on

which port you are using. TCP/IP reserves the lower 1,024 ports for specific protocols. Many of

these will seem familiar to you if you have spent any time surfing the Internet. Port number 21

is for FTP; 23 is for Telnet; 25 is for e-mail; 43 is for who is; 79 is for finger; 80 is for HTTP; 119 is

for netnews—and the list goes on. It is up to each protocol to determine how a client should

interact with the port.

For example, HTTP is the protocol that web browsers and servers use to transfer hypertext

pages and images. It is a quite simple protocol for a basic page-browsing web server. Here’s

how it works. When a client requests a file from an HTTP server, an action known as a hit, it

simply sends the name of the file in a special format to a predefined port and reads back the

contents of the file. The server also responds with a status code to tell the client whether or not

the request can be fulfilled and why.

A key component of the Internet is the address. Every computer on the Internet has one. An

Internet address is a number that uniquely identifies each computer on the Net. Originally, all

Internet addresses consisted of 32-bit values, organized as four 8-bit values. This address type

was specified by IPv4 (Internet Protocol, version 4). However, a new addressing scheme, called

IPv6 (Internet Protocol, version 6) has come into play. IPv6 uses a 128-bit value to represent an

address, organized into eight 16-bit chunks. Although there are several reasons for and

advantages to IPv6, the main one is that it supports a much larger address space than does

IPv4.

To provide backward compatibility with IPv4, the low-order 32 bits of an IPv6 address can

contain a valid IPv4 address. Thus, IPv4 is upwardly compatible with IPv6. Fortunately, when

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

using Java, you won’t normally need to worry about whether IPv4 or IPv6 addresses are used

because Java handles the details for you. Just as the numbers of an IP address describe a

network hierarchy, the name of an Internet address, called its domain name, describes a

machine’s location in a name space. For example, www.osborne.com is in the COM domain

(reserved for U.S. commercial sites); it is called osborne (after the company name), and www

identifies the server for web requests. An Internet domain name is mapped to an IP address by

the Domain Naming Service (DNS). This enables users to work with domain names, but the

Internet operates on IP addresses.

Key classes, interfaces, and exceptions in java.net package simplifying the complexity involved

in creating client and server programs are:

The Classes

 ContentHandler

 DatagramPacket

 DatagramSocket

 DatagramSocketImpl

 HttpURLConnection

 InetAddress

 MulticastSocket

 ServerSocket

 Socket

 SocketImpl

 URL

 URLConnection

 URLEncoder

 URLStreamHandler

The Interfaces

 ContentHandlerFactory

 FileNameMap

 SocketImplFactory

 URLStreamHandlerFactory

Exceptions

 BindException

 ConnectException

 MalformedURLException

 NoRouteToHostException

 ProtocolException

 SocketException

 UnknownHostException

 UnknownServiceException

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain the various networking classs, interfaces

and Java.Net Packages.

June 2011 12

Q.2 Why do you need Java.Net Package to write java

networking program?

Dec 2009 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

Unit 5

Topic: Socket Programming

Unit 5/Lecture 2

TCP/IP Socket Programming RGPV[Dec 2014(3)]

The two key classes from the java.net package used in creation of server and client programs

are:

ServerSocket RGPV[Dec 2014(7)]

Socket

A server program creates a specifi c type of socket that is used to listen for client requests

(server socket),In the case of a connection request, the program creates a new socket through

which it will exchange data with the client using input and output streams. The socket

abstraction is very similar to the fi le concept: developers have to open a socket, perform I/O,

and close it. Figure given below illustrates key steps involved in creating socket-based server

and client programs.

Fig. 5.1: Socket Based Server and Clients

A simple Server Program in Java The steps for creating a simple server program are:

1. Open the Server Socket: [RGPV/Dec 2010(10)]

ServerSocket server = new ServerSocket(PORT);

2. Wait for the Client Request:

Socket client = server.accept();

3. Create I/O streams for communicating to the client

DataInputStream is = new DataInputStream(client.getInputStream());

DataOutputStream os = new DataOutputStream(client.getOutputStream());

4. Perform communication with client

Receive from client: String line = is.readLine();

Send to client: os.writeBytes(Hello\n);

5. Close socket:

client.close();

An example program illustrating creation of a server socket, waiting for client request, and then

responding to a client that requested for connection by greeting it is given below:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

Program

// SimpleServer.java: A simple server program.

import java.net.*;

import java.io.*;

public class SimpleServer {

public static void main(String args[]) throws IOException {

// Register service on port 1254

ServerSocket s = new ServerSocket(1254);

Socket s1=s.accept(); // Wait and accept a connection

// Get a communication stream associated with the socket

OutputStream s1out = s1.getOutputStream();

DataOutputStream dos = new DataOutputStream (s1out);

// Send a string!

dos.writeUTF(Hi there);

// Close the connection, but not the server socket

dos.close();

s1out.close();

s1.close();

}

}

A simple Client Program in Java The steps for creating a simple client program are:

1. Create a Socket Object: [RGPV/Dec 2010(10)]

Socket client = new Socket(server, port_id);

2. Create I/O streams for communicating with the server.

is = new DataInputStream(client.getInputStream());

os = new DataOutputStream(client.getOutputStream());

3. Perform I/O or communication with the server:

Receive data from the server: String line = is.readLine();

Send data to the server: os.writeBytes(Hello\n);

4. Close the socket when done:

client.close();

An example program illustrating establishment of connection to a server and then reading a

message sent by the server and displaying it on the console is given below:

// SimpleClient.java: A simple client program.

import java.net.*;

import java.io.*;

public class SimpleClient {

public static void main(String args[]) throws IOException {

// Open your connection to a server, at port 1254

Socket s1 = new Socket(localhost ,1254);

// Get an input file handle from the socket and read the input

InputStream s1In = s1.getInputStream();

DataInputStream dis = new DataInputStream(s1In);

String st = new String (dis.readUTF());

System.out.println(st);

// When done, just close the connection and exit
we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

dis.close();

s1In.close();

s1.close();

}

}

Running Socket Programs

Compile both server and client programs and then deploy server program code on a machine

which is going to act as a server and client program, which is going to act as a client. If required,

both client and server programs can run on the same machine. To illustrate execution of server

and client programs, let us assume that a machine called mundroo.csse.unimelb.edu.au on

which we want to run a server program as indicated below:

[raj@mundroo] java SimpleServer

The client program can run on any computer in the network (LAN, WAN, or Internet) as long as

there is no fi rewall between them that blocks communication. Let us say we want to run our

client program on a machine called gridbus.csse.unimelb.edu.au as follows:

[raj@gridbus] java SimpleClient The client program is just establishing a connection with the

server and then waits for a message. On receiving a response message, it prints the same to the

console.

The output in this case is:

Hi there

which is sent by the server program in response to a client connection request. It should be

noted that once the server program execution is started, it is not possible for any other server

program to run on the same port until the fi rst program which is successful using it is

terminated. Port numbers are a mutually exclusive resource. They cannot be shared among

different processes at the same time.

S.NO RGPV QUESTIONS Year Marks

Q.1 What are the difference between tcp and udp? Dec 2014 3

Q.2 Explain in detail: server socket and client socket. Dec 2014 7

Q.3 How do you create a server socket and What port

number can be used?

Dec 2010 10

Q-4 How does a Client Program Initiate a Connection Dec 2010 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

Unit 5

Topic: Proxy Server and TCP/IP Client Socket

Unit 5/Lecture 3

Proxy Server[RGPV/Dec 2010(3)]

A server that sits between a client application, such as a Web browser, and a real server. It

intercepts all requests to the real server to see if it can fulfill the requests itself. If not, it

forwards the request to the real server.

Proxy servers have two main purposes:

 Improve Performance: Proxy servers can dramatically improve performance for groups

of users. This is because it saves the results of all requests for a certain amount of time.

Consider the case where both user X and user Y access the World Wide Web through a

proxy server. First user X requests a certain Web page, which we'll call Page 1. Sometime

later, user Y requests the same page. Instead of forwarding the request to the Web

server where Page 1 resides, which can be a time-consuming operation, the proxy server

simply returns the Page 1 that it already fetched for user X. Since the proxy server is

often on the same network as the user, this is a much faster operation. Real proxy

servers support hundreds or thousands of users. The major online services such as

America Online, MSN and Yahoo, for example, employ an array of proxy servers.

 Filter Requests: Proxy servers can also be used to filter requests. For example, a

company might use a proxy server to prevent its employees from accessing a specific set

of Web sites.

TCP/IP Client Socket

There are two kinds of TCP sockets in Java. One is for servers, and the other is for clients. The

ServerSocket class is designed to be a listener, which waits for clients to connect before doing

anything. Thus, ServerSocket is for servers. The Socket class is for clients. It is designed to

connect to server sockets and initiate protocol exchanges. Because client sockets are the most

commonly used by Java applications, they are examined here.

The creation of a Socket object implicitly establishes a connection between the client and

server. There are no methods or constructors that explicitly expose the details of establishing

that connection. Here are two constructors used to create client sockets:

Socket defines several instance methods. For example, a Socket can be examined at any time

for the address and port information associated with it, by use of the following methods:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.webopedia.com/TERM/S/server.htm
http://www.webopedia.com/TERM/C/client.htm
http://www.webopedia.com/TERM/B/browser.htm
http://www.webopedia.com/TERM/U/user.htm
http://www.webopedia.com/TERM/W/World_Wide_Web.htm
http://www.webopedia.com/TERM/W/web_page.htm
http://www.webopedia.com/TERM/N/network.htm
http://www.webopedia.com/TERM/A/America_Online.htm
http://www.webopedia.com/TERM/M/MSN.htm
http://www.webopedia.com/TERM/Y/Yahoo.html
http://www.webopedia.com/TERM/W/web_site.htm

7

You can gain access to the input and output streams associated with a Socket by use of the

getInputStream() and getOuptutStream() methods, as shown here. Each can throw an

IOException if the socket has been invalidated by a loss of connection. These streams are used

exactly like the I/O streams described in Chapter 19 to send and receive data.

Several other methods are available, including connect(), which allows you to specify a new

connection; isConnected(), which returns true if the socket is connected to a server; isBound(

),

which returns true if the socket is bound to an address; and isClosed(), which returns true if

the socket is closed.

The following program provides a simple Socket example. It opens a connection to a whois

port (port 43) on the InterNIC server, sends the command-line argument down the socket, and

then prints the data that is returned. InterNIC will try to look up the argument as a registered

Internet domain name, and then send back the IP address and contact information for that site.

/ Demonstrate Sockets.

import java.net.*;

import java.io.*;

class Whois {

public static void main(String args[]) throws Exception {

int c;

// Create a socket connected to internic.net, port 43.

Socket s = new Socket("internic.net", 43);

// Obtain input and output streams.

InputStream in = s.getInputStream();

OutputStream out = s.getOutputStream();

// Construct a request string.

String str = (args.length == 0 ? "osborne.com" : args[0]) + "\n";

// Convert to bytes.

byte buf[] = str.getBytes();

// Send request.

out.write(buf);

// Read and display response.

while ((c = in.read()) != -1) {

System.out.print((char) c);

}

s.close();
we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

}

}

If, for example, you obtained information about osborne.com, you’d get something similar

to the following:

Whois Server Version 1.3

Domain names in the .com, .net, and .org domains can now be registered

with many different competing registrars. Go to http://www.internic.net

for detailed information.

Domain Name: OSBORNE.COM

Registrar: NETWORK SOLUTIONS, INC.

Whois Server: whois.networksolutions.com

Referral URL: http://www.networksolutions.com

Name Server: NS1.EPPG.COM

Name Server: NS2.EPPG.COM

Socket Primitives

S.NO RGPV QUESTIONS Year Marks

Q.1 Write short notes on Proxy Server. Dec 2014 3

Q.1 What do you mean by Proxy Server? Explain TCP/IP

sockets.

June 2011 12

Q-2. Explain the following TCP socket Primitives BIND,

LISTEN, ACCPET AND CONNECT.

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

Unit 5

Topic: UDP Socket Programming

Unit 5/Lecture 4

UDP Socket Programming

As already said, TCP guarantees the delivery of packets and preserves their order on

destination. Sometimes these features are not required and since they do not come without

performance costs, it would be better to use a lighter transport protocol. This kind of service is

accomplished by the UDP protocol which conveys datagram packet s.

Datagram packets are used to implement a connectionless packet delivery service supported by

the UDP protocol. Each message is transferred from source machine to destination based on

information contained within that packet. That means, each packet needs to have destination

address and each packet might be routed differently, and might arrive in any order. Packet

delivery is not guaranteed.

The format of datagram packet is:

Java supports datagram communication through the following classes:

DatagramPacket

DatagramSocket

The class DatagramPacket contains several constructors that can be used for creating packet

object.

One of them is:

DatagramPacket(byte[] buf, int length, InetAddress address, int port);

This constructor is used for creating a datagram packet for sending packets of length length to

the specifi ed port number on the specifi ed host. The message to be transmitted is indicated in

the first argument.

The key methods of DatagramPacket class are:

byte[] getData()

Returns the data buffer.

int getLength()

Returns the length of the data to be sent or the length of the data received.

void setData(byte[] buf)

Sets the data buffer for this packet.

void setLength(int length) Sets the length for this packet.

The class DatagramSocket supports various methods that can be used for transmitting or

receiving data a datagram over the network. The two key methods are:

void send(DatagramPacket p)
we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

Sends a datagram packet from this socket.

void receive(DatagramPacket p)

Receives a datagram packet from this socket. A simple UDP server program that waits for

client’s requests and then accepts the message (datagram) and sends back the same message is

given below. Of course, an extended server program can manipulate client’s messages/request

and send a new message as a response.

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain TCP Sockets and UDP Sockets. June 2011 12

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

Unit 5

Topic: URLs and Connectivity in Java

Unit 5/Lecture 5

URL

The URL provides a reasonably intelligible form to uniquely identify or address information on

the Internet. URLs are ubiquitous; every browser uses them to identify information on the Web.

Within Java’s network class library, the URL class provides a simple, concise API to access

information across the Internet using URLs.

All URLs share the same basic format, although some variation is allowed. Here are two

examples: http://www.osborne.com/ and http://www.osborne.com:80/index.htm. A URL

specification is based on four components. The first is the protocol to use, separated from the

rest of the locator by a colon (:). Common protocols are HTTP, FTP, gopher, and file, although

these days almost everything is being done via HTTP (in fact, most browsers will proceed

correctly if you leave off the http:// from your URL specification).

The second component is the host name or IP address of the host to use; this is delimited on

the left by double slashes (//) and on the right by a slash (/) or optionally a colon (:). The third

component, the port number, is an optional parameter, delimited on the left from the host

name by a colon (:) and on the right by a slash (/). (It defaults to port 80, the predefined HTTP

port; thus, :80 is redundant.) The fourth part is the actual file path. Most HTTP servers will

append a file named index.html or index.htm to URLs that refer directly to a directory

resource. Thus, http://www.osborne.com/ is the same as http://www.osborne.com/

index.htm.

Java’s URL class has several constructors; each can throw a MalformedURLException. One

commonly used form specifies the URL with a string that is identical to what you see displayed

in a browser:

URL(String urlSpecifier) throws MalformedURLException

The next two forms of the constructor allow you to break up the URL into its component parts:

URL(String protocolName, String hostName, int port, String path) throws

MalformedURLException

URL(String protocolName, String hostName, String path) throws MalformedURLException

Another frequently used constructor allows you to use an existing URL as a reference context

and then create a new URL from that context. Although this sounds a little contorted, it’s really

quite easy and useful.

URL(URL urlObj, String urlSpecifier) throws MalformedURLException The following example

creates a URL to Osborne’s download page and then examines its properties:

// Demonstrate URL.

import java.net.*;

class URLDemo {

public static void main(String args[]) throws MalformedURLException {

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.osborne.com/

12

URL hp = new URL("http://www.osborne.com/downloads");

System.out.println("Protocol: " + hp.getProtocol());

System.out.println("Port: " + hp.getPort());

System.out.println("Host: " + hp.getHost());

System.out.println("File: " + hp.getFile());

System.out.println("Ext:" + hp.toExternalForm());

}

}

When you run this, you will get the following output:

Protocol: http

Port: -1

Host: www.osborne

File: /downloads

Ext:http://www.osborne/downloads

Notice that the port is –1; this means that a port was not explicitly set. Given a URL object, you

can retrieve the data associated with it. To access the actual bits or content information of

a URL, create a URLConnection object from it, using its openConnection() method, like this:

urlc = url.openConnection()

openConnection() has the following general form:

URLConnection openConnection() throws IOException

It returns a URLConnection object associated with the invoking URL object. Notice that it may

throw an IOException.

S.NO RGPV QUESTIONS Year Marks

Q.1 What do you mean by URL? Explain with its

Format.

June 2011 8

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

Unit 5

Topic: Remote Method Invocation

Unit 5/Lecture 6

Remote Method Invocation(RMI) [RGPV/Dec-2012(12),Dec 2014(3)]

RMI Provides a distributed object capability for Java applications l Allows a Java method to

obtain a reference to a remote object and invoke methods of the remote object nearly as easily

as if the remote object existed locally. The remote object can be in another JVM on the same

host or on different hosts across the network. It uses object serialization to marshal and

unmarshal method arguments. It supports the dynamic downloading of required class files

across the network.

RMI Application

RMI Stubs And Skeletons

RMI uses stub and skeleton objects to provide the connection between the client and the

remote object. A stub is a proxy for a remote object which is responsible for forwarding

method invocations from the client to the server where the actual remote object

implementation resides. A client's reference to a remote object, therefore, is actually a

reference to a local stub. The client has a local copy of the stub object. A skeleton is a server-

side object which contains a method that dispatches calls to the actual remote object

implementation. A remote object has an associated local skeleton object to dispatch remote

calls to it.

Note: Java 2 (JDK1.2) does not require an explicit skeleton class. The skeleton object is

automatically provided on the server side.

A method can get a reference to a remote object by

 looking up the remote object in some directory service. RMI provides a simple directory

service called the RMI registry for this purpose.

 by receiving the remote object reference as a method argument or return value

Developing RMI Application

An object becomes remote-enabled by implementing a remote interface, which has these

characteristics:

A remote interface extends the interface java.rmi.Remote.
we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Each method of the interface declares java.rmi.RemoteException in its throws clause, in

addition to any application-specific exceptions

 Steps To Develop An RMI Application

1. Design and implement the components of your distributed application

2. Define the remote interface(s)

3. Implement the remote object(s)

4. Implement the client(s)

5. Compile sources and generate stubs (and skeletons)

6. Make required classes network accessible

7. Run the application

Example-One

The classic Hello, World Example using RMI!

l First, define the desired remote interface:

import java.rmi.*;

/**

* Hello Interface.

*/

public interface IHello extends Remote {

public String sayHello() throws RemoteException;

}

 A class that implements this remote interface can be used as a remote object. Clients can

remotely invoke the sayHello() method which will return the string Hello, World to the client.

Next, provide an implementation of the remote object. We’ll implement the remote object as a

server.

 The remote object server implementation should:

 Declare the remote interfaces being implemented

 Define the constructor for the remote object

 Provide an implementation for each remote method in the remote interfaces

 Create and install a security manager

 Create one or more instances of a remote object

 Register at least one of the remote objects with the RMI remote object registry (or some

other naming service), for bootstrapping purposes.

To make things simple, our remote object implementation will extend

java.rmi.server.UnicastRemoteObject. This class provides for the exporting of a remote object

by listening for incoming calls to the remote object on an anonymous port.

Here’s the server for our remote object:

import java.rmi.*;

import java.rmi.server.*;

// Hello Server.

public class HelloServer extends UnicastRemoteObject

implements IHello {

private String name;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

public HelloServer(String name) throws RemoteException {

super();

this.name = name;

}

public String sayHello() {return "Hello, World!";}

public static void main(String[] args) {

// Install a security manager!

System.setSecurityManager(new RMISecurityManager());

try {

// Create the remote object.

HelloServer obj = new HelloServer("HelloServer");

// Register the remote object as "HelloServer".

Naming.rebind("rmi://serverhost/HelloServer", obj);

System.out.println("HelloServer bound in registry!");

}

catch(Exception e) {

System.out.println("HelloServer error: " + e.getMessage());

e.printStackTrace();

}

}

}

Next, we need to write our client application:

import java.rmi.*;

// Hello Client.

public class HelloClient {

public static void main(String[] args) {

// Install a security manager!

System.setSecurityManager(new RMISecurityManager());

try {

// Get a reference to the remote object.

IHello server =

(IHello)Naming.lookup("rmi://serverhost/HelloServer");

System.out.println("Bound to: " + server);

//Invoke the remote method.

System.out.println(server.sayHello());

}

catch(Exception e) {

e.printStackTrace();

}

}

}

Now we can compile the client and server code:

javac IHello.java

javac HelloServer.java

javac HelloClient.java

l We next use the rmic utility to generate the required stub and

skeleton classes:
we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

rmic HelloServer

l This generates the stub and skeleton classes:

HelloServer_Stub.class

HelloServer_Skel.class (Not needed in Java 2)

Our next step would be to make the class files network accessible.

For the moment, let’s assume that all these class files are

available locally to both the client and the server via their

CLASSPATH. That way we do not have to worry about dynamic

class downloading over the network. We’ll see in the next

example how to properly handle that situation.

l The files that the client must have in its CLASSPATH are:

IHello.class

HelloClient.class

HelloServer_Stub.class

l The files that the server must have in its CLASSPATH are:

IHello.class

HelloServer.class

HelloServer_Stub.class

HelloServer_Skel.class (Not needed in Java 2)

Now, we are ready to run the application:

On the server:

Start the rmiregistry:

rmiregistry &

Start the server:

java -Djava.security.policy=policy HelloServer

On the client:

Start the client:

java -Djava.security.policy=policy HelloClient

Get this wonderful output on the client:

Hello, World!

S.NO RGPV QUESTIONS Year Marks

Q.1 Write short notes on RMI Dec 2014 3

Q.2 What is RMI? Write a RMI Server and RMI Client

Program

June 2011 8

Unit 5

Topic: Client Server Communication

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

Unit 5/Lecture 7

Client-Server Model

Client - entity that makes a request for a service

Server - entity that responds to a request and provides a service.

The predominant networking protocol in use today is the Internet Protocol (IP). The main API

for writing client-server programs using IP is the Berkeley socket API. The java.net package

provides classes to abstract away many of the details of socket-level programming, making it

simple to write client-server applications.

Client Example

import java.net.*;

import java.io.*;

/**

* Client Program.

* Connects to a server which converts text to uppercase.

* Server responds on port 2345.

* Server host specified on command line: java Client server_host

*/

public class Client {

public static void main(String args[]) {

Socket s;

String host;

int port = 2345;

DataInputStream is;

DataInputStream ui;

PrintStream os;

String theLine;

host = args[0];

try {

s = new Socket(host, port);

is = new DataInputStream(s.getInputStream());

os = new PrintStream(s.getOutputStream());

ui = new DataInputStream(System.in);

System.out.println("Enter Data");

while(true) {

theLine = ui.readLine();

if (theLine.equals("end"))

break;

os.println(theLine);

System.out.println(is.readLine());

}

os.close();

is.close();

ui.close();

s.close();

}

catch(UnknownHostException e) {

System.out.println(Can’t find " + host);

}

catch(SocketException e) {
we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

System.out.println("Could not connect to + host);

}

catch(IOException e) {

System.out.println(e);

}

}}

Server Example

import java.net.*;

import java.io.*;

/**

* Server Program.

* Converts incoming text to uppercase and sends converted

* text back to client.

* Accepts connection requests on port 2345.

*/

public class Server {

public static void main(String args[]) {

ServerSocket theServer;

Socket con;

PrintStream ps;

DataInputStream dis;

String input;

int port = 2345;

boolean flag = true;

try {

theServer = new ServerSocket(port);

con = theServer.accept();

dis = new DataInputStream(con.getInputStream());

ps = new PrintStream (con.getOutputStream());

while(flag == true) {

input = dis.readLine();

if (input == null) break;

ps.println(uppers(input));

}

con.close();

dis.close();

ps.close();

theServer.close();

}

catch(NullPointerException e){

System.out.println("NPE" + e.getMessage());

}

catch(IOException e) {

System.out.println(e);

}

}

public static String uppers(String input) {

char let;

StringBuffer sb = new StringBuffer(input);
we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

for (int i = 0; i < sb.length(); i++) {

let = sb.charAt(i);

let = Character.toUpperCase(let);

sb.setCharAt(i,let);

}

return sb.toString();

}

}

S.NO RGPV QUESTIONS Year Marks

Q.1 How does the Client Program initiate a connection? Dec 2010 10

Unit-5

Topic- RMI Services

Unit-5/Lecture 8
we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

 Registry Service for RMI

The registration of the remote object must be done by the server in order for the client to look

it up, is called the RMI Registry. In RMI, the client must contact an RMI registry, so that the

server side application will be able to contact the client’s registry which points the client in the

direction of the service. The client registers the service with the registry so that it is transparent

to even for the server.

The class rebind () method of java.rmi.Naming class is used to specify the port number. For

example if the registry is running on a port number 3271 of an application named

HelloRMIRegistry the following is the usage of the URL to reference the remote object:

Naming.rebind ("//myhost:3271/ HelloRMIRegistry ", obj);

The URL stored on the web page needs to specify the non-default port number. When the

server’s remote objects created by the server can include the URL from which the stub class can

dynamically be downloaded to the client. The following example depicts this:

java -Djava.rmi.server.codebase=http://myhost/~username/codebase/

examples.ExampleRMIURL

where ExampleRMIURL is the name of the application.

 bind an object to the registry

If an object implements the java.rmi.Remote interface, an object is to be bound to registry

context. Each registry context implements the Referenceable interface.

The object factory is implemented by the RegistryContextFactory which converts the registry

references into the corresponding registry contexts or remote objects. To construct the registry

constructs, the URL of the registry must be determined. In this way the remote objects will be

bounded with registry contexts.

The methods of registering and gaining access to the Remote Object

The methods of remote objects are to be invoked by implementing the java.rmi.Remote

interface.

Methods:

bind(): binds the specified name to the remote object. The name parameter of this method

should be in an URL format.

unbind(): Destroys the binding for a specific name of a remote method in the registry

rebind(): Binds again the specified name to the remote object. The current binding will be

replaced by rebinding.

list(): Returns the names of the names that were bound to the registry in an array form. These
we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

names are in the form of URL-formatted string.

lookup(): A stub, a reference will be returned for the remote object which is related with a

specified name.

BOOK AUTHOR PRIORITY

The Complete Reference Java 2 Naughton & Schildt 1

Java- How to Program Deitel 2

Core Java 2 (Vol I & II) Horstmann & Cornell 3

Java 2.0 lvan Bayross 4

Beginning Java 2, JDK 5 Ed. Ivor Horton’s 5

Java Programming for the

absolute beginners

Russell 6

we dont take any liability for the notes correctness. http://www.rgpvonline.com

