

2.4 RELATIONSHIP BETWEEN THE OPERATORS

All the operators, $\Delta, \nabla, \delta, \mu$ and D can be expressed in terms of E and the relations are taken as standard results. These relations are of great use in the development of theory of finite difference and solving problems.

1. ∇ in terms of E

$$
\begin{align*}
\Delta y_{n} & =y_{n+1}-y_{n} \\
& =E y_{n}-y_{n} \\
& =(E-1) y_{n} \\
\therefore \Delta & =E-1 \quad \text { or } \quad E=1+\Delta \tag{2.3}
\end{align*}
$$

Unit-03/Lecture-01

2. ∇ in terms of E

$$
\begin{gather*}
\nabla y_{n+1}=y_{n+1}-y_{n}=y_{n+1}-E^{-1} y_{n+1}=\left(1-E^{-1}\right) y_{n+1} \\
\therefore \nabla=1-E^{-1} \quad \text { or } \quad E=(1-\nabla)^{-1} \tag{2.4}
\end{gather*}
$$

3. δ in terms of E

$$
\text { By definition } \begin{align*}
\delta y_{r} & =y_{r+h / 2}-y_{r-h / 2} \\
& =E^{1 / 2} y_{r}-E^{-1 / 2} y_{r}=\left(E^{1 / 2}-E^{-1 / 2}\right) y_{r} \tag{2.5}\\
\therefore \delta & =E^{1 / 2}-\mathrm{E}^{-1 / 2} .
\end{align*}
$$

4. μ in terms of E

$$
\begin{align*}
& \mu y_{r}=\frac{1}{2}\left[y_{r+\frac{h}{2}}{ }_{r-\frac{h}{2}}\right]=\frac{1}{2}\left[E^{\frac{1}{2}} y_{r}+E^{-\frac{1}{2}} y_{r}\right]=\frac{1}{2}\left[E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right] y_{r} \\
& \therefore \mu=\frac{1}{2}\left[E^{\frac{1}{2}}+E^{-\frac{1}{2}}\right] \tag{2.6}
\end{align*}
$$

5. D in terms of E

$$
\begin{align*}
E f(x)=f(x+h) & =f(x)+h f^{\prime}(x)+\frac{h^{2}}{2!} f^{\prime \prime}(x)+\ldots \text { (by Taylor's series) } \\
& =\left[1+h D+\frac{h^{2}}{2!} D^{2}+\ldots\right] f(x)\left(f^{\prime}(x)=D f(x)\right) \\
\therefore E & =1+h D+\frac{h^{2}}{2!} D^{2}+\ldots \\
& =e^{h D} \\
\text { or } \quad D & =\frac{1}{h} \log E=\frac{1}{h} \log (1-\nabla)^{-1}=\frac{1}{h} \log (1+\Delta) \tag{2.7}
\end{align*}
$$

2.4.1 Some Interrelationships in Operators

1. $E=1+\Delta$ also $E=(1-\nabla)^{-1}$
$\therefore 1+\Delta=(1-\nabla)^{-1}$ or $(1+\Delta)(1-\nabla)=1$
or $1-\Delta \nabla+\Delta-\nabla=1$
or $\Delta \nabla=\Delta-\nabla$
Also $\Delta \nabla=(E-1)\left(1-\mathrm{E}^{-1}\right)=\frac{(E-1)^{2}}{E}$

$$
\begin{aligned}
& =E-2+E^{1} \\
& =\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}=\delta^{2} \\
\Delta \nabla & =\Delta-\nabla=\delta^{2}
\end{aligned}
$$

Unit-03/Lecture-01

2. $D=\frac{1}{h} \log E=\frac{1}{h} \log (1+\Delta)=\frac{1}{h}\left[\Delta-\frac{\Delta^{2}}{2}+\frac{\Delta^{3}}{3}-\ldots\right]$
3. $D=\frac{1}{h} \log E=\frac{1}{h} \log (1-\nabla)^{-1}=\frac{1}{h}\left[\nabla+\frac{\nabla^{2}}{2}+\frac{\nabla^{3}}{3}-\ldots\right]$
4. $\delta E^{1 / 2}=\left(E^{1 / 2}-E^{-1 / 2}\right) E^{1 / 2}=E-1=\Delta$
5. $\mu \delta=\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)=\frac{1}{2}\left[E-E^{-1}\right]$

$$
=\frac{1}{2}((1+\Delta)-(1-\nabla))=\frac{1}{2}(\Delta+\nabla)
$$

6. $\mu-\frac{\delta}{2}=\frac{E^{1 / 2}+E^{-1 / 2}}{2}-\frac{E^{1 / 2}-E^{-1 / 2}}{2}=E^{-1 / 2}$
7. $\nabla=1-E^{-1}=1-e^{-h D}$
8. $\Delta=\mu \delta+\frac{1}{2} \delta^{2}$

RHS is $\frac{1}{2}\left(E^{1 / 2}+E^{-1 / 2}\right)\left(E^{1 / 2}-E^{-1 / 2}\right)+\frac{1}{2}\left(E^{1 / 2}-E^{-1 / 2}\right)^{2}$

$$
\begin{aligned}
& =\frac{1}{2}\left(E-E^{-1}\right)+\frac{1}{2}\left(E+E^{-1}-2\right) \\
& =E-1 \\
& =\Delta(\text { LHS })
\end{aligned}
$$

9. $\Delta+\nabla=\frac{\Delta}{\nabla}-\frac{\nabla}{\Delta}$

RHS $=\frac{\Delta^{2}-\nabla^{2}}{\nabla \Delta}=\frac{(\Delta+\nabla)(\Delta-\nabla)}{\Delta \nabla}$
By (1) We have $\Delta-\nabla=\Delta \nabla$
$\therefore \Delta+\nabla=$ LHS
10. $\delta=\Delta(1+\Delta)^{-1 / 2}$

RHS $(E-1) E^{-1 / 2}=E^{1 / 2}-E^{-1 / 2}=\delta$

Example 2.4 Prove that $\Delta \log f(x)=\log \left(1+\frac{\Delta f(x)}{f(x)}\right)$.

Solution

LHS $=\Delta \log f(x)=\log f(x+h)-\log f(x)$

$$
\begin{aligned}
& =\log \left(\frac{f(x+h)}{f(x)}\right)=\log \left\{\frac{f(x)+f(x+h)-f(x)}{f(x)}\right\} \\
& =\log \left(\frac{f(x)+\Delta f(x)}{f(x)}\right)=\log \left(1+\frac{\Delta f(x)}{f(x)}\right) \text { Proved. }
\end{aligned}
$$

Unit-03/Lecture-02

Example 2.5 Evaluate $\Delta^{3}\left(\frac{1}{x}\right)$.

Solution

$$
\begin{gathered}
\Delta\left(\frac{1}{x}\right)=\frac{1}{x+h}-\frac{1}{x}=\frac{-h}{(x+h) x} \\
\Delta^{2}\left(\frac{1}{x}\right)=\Delta\left(\frac{-h}{(x+h) x}\right)=\frac{(-1)^{2}}{(x+2 h)(x+h)} \frac{1.2 h^{2}}{x} \\
\Delta^{3}\left(\frac{1}{x}\right)=\frac{(-1)^{3} 3!h^{3}}{x(x+h)(x+2 h)} \\
\therefore \Delta^{n}\left(\frac{1}{x}\right)=\frac{(-1)^{n} n!h^{n}}{x(x+h)(x+2 h) \ldots(x+n h)}
\end{gathered}
$$

In case $h=1 \quad \Delta^{n}\left(\frac{1}{x}\right)=\frac{(-1)^{n} n!}{x(x+1)(x+2) \ldots(x+n)}$

Example 2.10 Find $\Delta\left(x^{2} e^{3 x}\right)$.

Solution

By Eq. (2.8)

$$
\begin{aligned}
\Delta\left(x^{2} e^{3 x}\right) & =(x+h)^{2}\left[e^{3(x+h)}-e^{3 x}\right]+e^{3 x}\left[(x+h)^{2}-x^{2}\right] \\
& =(x+h)^{2}\left(e^{3 x}-1\right) e^{3 x}+e^{3 x}\left(h^{2}+2 x h\right) .
\end{aligned}
$$

Example 2.11 Find $\Delta\left(\frac{e^{a x}}{\log x}\right)$.

Solution

By Eq. (2.9)

$$
\begin{aligned}
\Delta\left(\frac{e^{a x}}{\log x}\right) & =\frac{\left(e^{a(x+h)}-e^{a x}\right) \log x-\{\log (x+h)-\log x\} \times e^{a x}}{\log (x+h) \log x} \\
& =\frac{\left(e^{a t}-1\right) e^{a x} \log x-\log \left(1+\frac{h}{x}\right) e^{a x}}{\log (x+h) \log x}
\end{aligned}
$$

Example 2.13 Evaluate (a) $\Delta\left(\frac{3 x+10}{x^{2}+3 x+1}\right)$, and (b) $\frac{\Delta}{E}\left(\frac{3 x+10}{x^{2}+3 x+1}\right)$.
Solution
(a) Calculate by Eq. (2.9)
(b) $\frac{\Delta}{E}=\frac{E-1}{E}=\left(1-E^{-1}\right)\left(\frac{3 x+10}{x^{2}+3 x+1}\right)$

$$
=\frac{3 x+10}{x^{2}+3 x+1}-\frac{3(x-1)+10}{(x-1)^{2}+3(x-1)+1}=\frac{3 x+10}{x^{2}+3 x+1}-\frac{3 x+7}{x^{2}+x-1}
$$

Unit-03/Lecture-02

Example 2.14 Find $\frac{\Delta^{2}}{E}\left(e^{2 x}-x\right), \quad h=1$.

Solution

$$
\begin{aligned}
\therefore \frac{(E-1)^{2}}{E}\left(e^{2 x} \cdot x\right) & =\left(E-2+E^{-1}\right)\left(e^{2 x} \cdot x\right) \\
& =e^{2(x+1)}(x+1)-2 e^{2 x} \cdot x+e^{2(x-1)}(x-1) \\
& =e^{2 x}\left(e^{2}(x+1)-2 x+e^{-2}(x-1)\right)
\end{aligned}
$$

Example 2.15 Find $\frac{\Delta^{2}}{E^{2}}(\cos (x+a))$)

Solution

$$
\begin{aligned}
\left(1-2 E^{\prime}\right. & \left.+E^{-2}\right) \cos (x+a) \\
& =\cos (x+a)-2 \cos (x-h+a)+\cos (x-2 h+a)
\end{aligned}
$$

FACTORIAL POLYNOMIAL AND ITS USES IN FINITE DIFFERENCE

The expression $x(x-h)(x-2 h) \ldots(x-(n-1) h)$ is called a factorial polynomial of degree n and is denoted by $x^{(n)}$.
The expression $\frac{1}{x(x-h) \ldots(x-(n-1) h)}$ is called reciprocal factorial polynomial and is denoted by $x^{(-n)}$.

An ordinary polynomial may be changed to factorial polynomial by synthetic division and the resulting polynomial may be used for finding any difference of the polynomial easily.

Synthetic Division and Factorial Polynomial from Ordinary Polynomial

Let $a_{0} x^{4}+a_{1} x^{3}+a_{2} x^{2}+a_{4}$ be the ordinary polynomial and h be interval.

1. Write the coefficients in descending powers of x. Take zero for missing term

$$
\begin{array}{lllll}
a_{0} & a_{1} & a_{2} & 0 & a_{4}
\end{array}
$$

2. Multiply a_{0} by zero and place it below a_{1}, add the result and multiply the sum by zero and place it below a_{2} and complete the line.

0.1	a_{0}	a_{1}	a_{2}	0	a_{4}
		0	0	0	0
	-	-	-	-	-
	a_{0}	a_{1}	a_{2}	0	$\left\lfloor a_{4}\right\rceil$

a_{4} is the last coefficient of factorial polynomial.
3. Repeat the process by h

$h\rfloor$	a_{0}	a_{1}	a_{2}	0	$\left\lfloor a_{4}\right]$
		$a_{0} h$	$b_{1} h$	$c_{1} h_{2}$	
	-	-	-	-	-
	a_{0}	b_{1}	c_{1}	$\left[d_{1}\right]$	

\boldsymbol{d}_{1} is the coefficient of $\boldsymbol{x}^{(1)}$
4. Repeat the process with $2 h$ and $3 h$, respectively

2 h ,	a_{0}	b_{1}	c_{1}	$\left[d_{1}\right]$
		$a_{0} 2 h$	$d_{2} h$	
	a_{0}	(d_{2})	[$\left.d_{3}\right]$	
3h.」	a_{0}	d_{2}	$\left[d_{3}\right]$	
		$3 h a_{0}$		
	-	-		
	[a_{0}]	$\left[e_{1}\right]$		

The factorial polynomial is
$a_{0} x^{(4)}+e_{1} x^{(3)}+d_{3} x^{(2)}+d_{1} x^{(1)}+a_{4}$

Unit-03/Lecture-03

Interpolation(Newton forward)

Consider the points $x_{j}, x_{j}+h, x_{j}+2 h, \ldots$, and recall that

$$
E f_{j}=f_{t+1}=f\left(x_{j}+h\right), \quad E^{\theta} f_{j}=f_{j+\theta}=f\left(x_{j}+\theta h\right),
$$

where θ is any real number. Formally, one has (since since $\Delta=E-1$)

$$
\begin{aligned}
f\left(x_{j}+\theta h\right) & =E^{\theta} f_{j} \\
& =(1+\Delta)^{\theta} f_{j} \\
& =\left[1+\theta \Delta+\frac{\theta(\theta-1)}{2!} \Delta^{2}+\frac{\theta(\theta-1)(\theta-2)}{3!} \Delta^{3}+\cdots\right] f_{j},
\end{aligned}
$$

which is Newton's forward difference formula. The linear and quadratic (forward) interpolation formulae correspond to first and second order truncation, respectively. If we truncate at n-th order, we obtain
$f\left(x_{j}+\theta h\right) \approx\left[1+\theta \Delta+\frac{\theta(\theta-1)}{2!} \Delta^{2}+\cdots+\frac{\theta(\theta-1) \cdots(\theta-n+1)}{n!} \Delta^{n}\right] f_{j}$
$\Delta^{n+k} f_{j}=0, \quad k=1,2, \ldots$
which is the case if f is a polynomial of degree n.
example :- consider the difference table of $f(x)=\sin x$ for $x=0^{\circ}\left(10^{\circ}\right) 50^{\circ}$:

x°	$f(x)=\sin x$		- ${ }^{\text {a }}$	$\Delta^{\text {¹ }}$	$\Delta^{4} \Delta^{4}$
0	0				
		1736			
10	0.1736		-52		
		1694		-52	
20	0.3420		-104		4
		1580		-48	0
30	0.5000		-152		4
		1428		-44	
40	0.6428		-196		
		1232			
30	0.766				

Since the fourth order differences are constant, we conclude that a quartic approximation is appropriate. (The third-order differences are not quite constant within expected round-offs, and we anticipate that a cubic approximation is not quite good enough.) In order to determine $\sin 5^{\circ}$ from the table, we use Newton's forward difference formula (to fourth order); thus, taking $x_{j}=0$,

Unit-03/Lecture-03

$$
\begin{aligned}
& \text { we find } \theta=\frac{5-0}{10}=\frac{1}{2}(h=10), \text { and } \\
& \begin{aligned}
\sin 5^{\circ} \approx & \sin 0^{\circ}+\frac{1}{2}(0.1736)+\frac{1}{2} \frac{1}{2}\left(-\frac{1}{2}\right)(-0.0052)+\frac{1}{6} \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{1}{2}\right)(-0.0052) \\
& \quad+\frac{1}{24} \frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right)(0.0004) \\
= & 0+0.0868+0.0006(5)-0.0003(3)-0.0000(2) \\
= & 0.0871 \text { (compare with the actual vaiue } 0.0872 \text { to } 4 D)
\end{aligned}
\end{aligned}
$$

MISSING TERM METHOD:-

Example 2.20 Find the missing term.

x	1	2	3	4	5
y	-1	3	-	53	111

Solution

First Method
The number of data in y is 4 . So y will fit a third degree polynomial in x.

$$
\therefore \Delta^{4} y_{0}=0 \text { or }(E-1)^{4} y_{0}=0
$$

or $\left(E^{4}-4 E^{3}+6 E^{2}-4 E+1\right) y_{0}=0$
or $y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}=0$
From the table, we see that $y_{0}=-1, y_{1}=3, y_{2}=?, y_{3}=53, y_{4}=111$.
Putting these values in Eq. (2.10), we get

$$
\begin{aligned}
& 111-4 \times 53+6 y_{2}-4 \times 3-1=0 \\
& \text { or } y_{2}=19
\end{aligned}
$$

This result is correct because the data satisfy the cubic $f(x)=x^{3}-3 x+1$ and $f(3)=19$.
This method gives correct result and labor is much less.

Second Method

The other way of handling the problem is to make the difference table

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$
1	-1				
2	3	4			
		$y_{2}-3$	$y_{2}-7$		
3	y_{2}		$56-2 y_{2}$	$63-3 y_{2}$	
		$53-y_{2}$		$3 y_{2}-51$	
4	53		$5+y_{2}-114$		
		58			
5	111				
6					

Since we have only four values of y, the data $\Delta^{4} y_{0}=0$,

$$
\text { i.e., } 6 y_{2}-114=0 \quad \text { or } \quad y_{2}=19
$$

We conclude that first method is better and has less work.

Unit-03/Lecture-03

Example 2.21 Find the missing data.

x	0	5	10	15	20
y	6	10	-	17	-
	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}

Solution

The number of data in y is 4 , so the data will fit a cubic polynomial, then

1. $\Delta^{4} y_{0}=0$ and $2 . \Delta^{4} y_{1}=0$ (for two missing data take two equations).

First equation gives $(E-1)^{4} y_{0}=0$
or $y_{4}-4 y_{3}+6 y_{2}-4 y_{1}+y_{0}=0$
or $y_{4}-4 \times 17+6 y_{2}-4 \times 10+6=0$, giving $y_{4}+6 y_{2}=102$
The second equation $\Delta^{4} y_{1}=0$ gives
$(E-1)^{4} y_{1}=0 \quad$ or $y_{5}-4 y_{4}+6 y_{3}-4 y_{2}+y_{1}=0$
Putting the values of y from the table, we get
$31-4 y_{4}+6 \times 17-4 y_{2}+10=0$
or $4 y_{2}+4 y_{4}=143$
Now solving (i) and (ii), we get $y_{2}=13.25$ and $y_{4}=22.50$.

S.NO	RGPV QUESTIONS							Year		Marks
Q. 1	Derive Newton's forward interpolation formula.							JUNE 2014	2	
Q. 2	Define interpolation and write the Newton's Forward and Backward interpolation formula.							DEC 2014	2	
Q. 3	Find $f(9)$ from the following table:							JUNE 2011	7	
	X 5		7		11	13	17			
	$\mathrm{F}(\mathrm{x}) \quad 1$	0	392		1452	2366	5202			
Q. 4	Find the number of mem getting wages between Rs. 10 and Rs. 15 from the following data:							$\begin{array}{\|lr} \hline \text { RGPV } & \text { DEC } \\ 2013, & \text { JUNE } \\ 2010 & \\ \hline \end{array}$	7	
	Wages in (Rs.)	0-10		10-20		20-30	30-40			
	Frequency	9		30		35	42			

Unit-03/Lecture-04

Backward formula

1. Newton's backward difference formula

Formally, one has (since $\nabla=1-E^{-1}$)
which is Newton's backward difference formula. The linear and quadratic (backward) interpolation formulae correspond to truncation at first and second order, respectively. The approximation based on the $f_{j-n}, f_{j-n+1}, \ldots, f_{j-1}, f_{j}$ is

$$
f\left(r_{i}+\theta h\right) *\left[1+\theta \nabla+\frac{\theta(\theta+1)}{2!} \nabla^{2}+\cdots+\frac{\theta(\theta+b) \cdots(\theta+n-1)}{n!} \nabla^{n}\right] f
$$

Newton-Gregory Backward Difference Interpolation polynomial:

If the data size is big then the divided difference table will be too long. Suppose the desired intermediate value
(\widetilde{x}) at which one needs to estimate the function ${ }^{(\text {i.e.f } f(\tilde{x}))}$ at which one needs to estimate the function falls towards the end or say in the second half of the data set then it may be better to start the estimation process from the last data set point. For this we need to use backward-differences and backward difference table.
Let us first define backward differences and generate backward difference table, say for the data set $\left(x_{i}, f_{i}\right), i=0,1,2,3,4$.

First order backward difference ${ }^{\nabla f_{i}}$ is defined as:

$$
\nabla f_{i}=f_{i}-f_{i-1}
$$

Second order backward difference ${ }^{\nabla^{2} f_{i}}$ is defined as:

$$
\begin{equation*}
\nabla^{2} f_{i}=\nabla f_{i}-\nabla f_{i-1} \tag{11.2}
\end{equation*}
$$

In general, the $k^{\text {th }}$ order backward difference is defined as

$$
\begin{equation*}
\nabla^{k} f_{i}=\nabla^{k-1} f_{i}-\nabla^{k-1} f_{i-1} \tag{11.3}
\end{equation*}
$$

In this case the reference point is ${ }^{x_{n}}$ and therefore we can derive the Newton-Gregory backward difference interpolation polynomial as:

$$
\begin{equation*}
P_{n}(\mathrm{~S})=f_{n}+s \nabla f_{n}+\frac{s(s+1)}{2!} \nabla^{2} f_{n}+\ldots \ldots+\frac{s(s+1) \ldots(s+n-1)}{n!} \nabla^{n} f_{n} \tag{12}
\end{equation*}
$$

Whes $s=\frac{x-x_{n}}{h}$
Where
For constructing ${ }^{P_{n}(s)}$ as given in ${ }^{\text {Eqn.(12) }}$ it will be easier if we first generate backward-difference table. The backward difference table for the data ${ }^{\left(x_{i}, f_{i}\right), \quad i=0,1,2,3,4}$ is given below:

Example: Given the following data estimate ${ }^{f(4.12)}$ using Newton-Gregory backward difference interpolation polynomial:

i	0	1	2	3	4	5
x_{i}	0	0	1	2	3	3

Solution:

Here

$$
\begin{aligned}
& x_{n}=5, \quad x=4.12, \quad h=1 \\
& \therefore s=\frac{x-x_{n}}{h}=\frac{4.12-5}{1}=-0.88
\end{aligned}
$$

\therefore Newton Backward Difference polynomial ${ }^{P_{5}(x)}$ is given by

$$
\begin{gathered}
P_{5}(s)=f_{5}+s \nabla f_{5}+\frac{s(s+1)}{2!} \nabla^{2} f_{5}+\frac{s(s+1)(s+2)}{3!} \nabla^{3} f_{5}+\frac{s(s+1)(s+2)(s+3)}{4!} \nabla^{4} f_{5}+ \\
\frac{s(s+1)(s+2)(s+3)(s+4)}{5!} \nabla^{5} f_{5}
\end{gathered}
$$

Unit-03/Lecture-05
Central interpolation formula
\rightarrow Stirling Formula (Central Difference)
This formula is applied for interpolation near the middle value of the table.

$$
\begin{aligned}
y_{n}= & y_{0}+p \mu \delta y_{0}+\frac{p^{2}}{2!} \delta^{2} y_{0}+\frac{p\left(p^{2}-1^{2}\right)}{3!} \mu \delta^{3} y_{0} \\
& +\frac{p^{2}\left(p^{2}-1^{2}\right)}{4!} \delta^{4} y_{0}+\frac{p\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right)}{5!} \mu \delta^{5} y_{0}+\ldots .
\end{aligned}
$$

y	δ	δ^{2}	δ^{3}	δ^{4}
y_{-2}				
y_{-1}	$\delta y_{-3 / 2}$	$\delta^{2} y_{-1}$	$\delta^{3} y_{-1 / 2}$	$\delta^{4} y_{0}$
$y_{0}<$	$\delta y_{-1 / 2}$	$\delta^{2} y_{0}$	δ^{3},	$\delta^{3} y_{1 / 2}$
y_{1}	$\delta y_{3 / 2}$			

$$
\begin{aligned}
\mu \delta y_{0} & =\frac{1}{2}\left(\delta y_{-\frac{1}{2}}+\delta y_{\frac{1}{2}}\right) \\
\mu \delta^{3} y_{0} & =\frac{1}{2}\left(\delta^{3} y_{-\frac{1}{2}}+\delta^{3} y_{\frac{1}{2}}\right)
\end{aligned}
$$

From the Central table, we have

$$
\begin{aligned}
& \frac{1}{2}\left(\Delta y_{0}+\Delta y_{-1}\right)= \\
\frac{1}{2}\left(\Delta^{3} y_{-1}+\Delta^{3} y_{-2}\right)= & \frac{1}{2}\left(\delta y_{1 / 2}+\delta y_{-1 / 2}\right)=\mu \delta y_{0}, \\
\Rightarrow & \left.y_{p}=y_{0}+p \mu \delta y_{0}+\frac{p^{2}}{2!} \delta_{-1 / 2}\right)=\mu \delta^{3} y_{0}+\frac{p\left(p^{2}-1^{2}\right)}{3!} \mu \delta^{3} y_{0}+\frac{p^{2}\left(P^{2}-1^{2}\right)}{4!} \delta^{4} y_{0}+ \\
& \frac{p\left(p^{2}-1^{2}\right)\left(p^{2}-2^{2}\right)}{S!} \delta^{5} \mu y_{0}+\ldots .
\end{aligned}
$$

Note: This formula involves even differences and mean of odd differences.

Unit-03/Lecture-05

EXAMPLE: Use stirling's formula to evaluate $f(1.22)$, given:

x	1.0	1.1	1.2	1.3
$f(x)$	8.403	8.781	9.129	9.451

(R.G.P.V., Bhopal III Sem June 2007)

Solution: Difference table is

x	P	$y=f(x)$	$\delta f(x)$	$\delta^{2} f(x)$	$\delta^{3} f(x)$
1.0	-2	8.403	0.378		
1.1	-1	8.781	0.348	-0.030	
1.2	0	9.129	0.322	0.026	0.004
1.3	1	9.451			

$$
\begin{aligned}
& \quad \begin{array}{l}
a+p h=1.22 \quad a=1.2, \quad h=0.1 \\
\Rightarrow 1.2+p(0.1)=1.22 \\
\Rightarrow p=0.2
\end{array} \\
& \text { By stirling formula }
\end{aligned}
$$

$$
\begin{aligned}
y_{p} & =y_{0}+p \mu \delta y_{0}+\frac{p^{2}}{2!} \delta^{2} y_{0}+\frac{p\left(p^{2}-1^{2}\right)}{3!} \mu \delta^{3} y_{0}+\ldots \\
y_{1.22} & =9.129+0.2\left(\frac{0.348+0.322}{2}\right)+\frac{(0.2)^{2}}{2}(-0.026) \\
& =9.129+0.2(0.335)+0.02(-0.026) \\
& =9.129+0.0670-0.00052=9.129+0.06648 \\
& =9.19548
\end{aligned}
$$

Unit-03/Lecture-06

Lagrange's formula

The La-grange's Interpolation Formula is given as,

$$
y=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right) \ldots\left(x_{0}-x_{n}\right)} y_{0}+\frac{\left(x-x_{0}\right)\left(x-x_{2}\right) \ldots\left(x-x_{n}\right)}{\left(x_{1}-x_{0}\right)\left(x_{1}-x_{2}\right) \ldots\left(x_{1}-x_{n}\right)} y_{1}+\ldots .+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right) \ldots .\left(x-x_{n-1}\right)}{\left(x_{n}-x_{0}\right)\left(x_{n}-x_{1}\right) \ldots\left(x_{n}-x_{n-1}\right)} y_{n}
$$

Example : Compute $\mathbf{f}(\mathbf{0 . 3})$ for the data

x	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{7}$
f	1	3	49	$\mathbf{1 2 9}$	$\mathbf{8 1 3}$

using Lagrange's interpolation formula (Analytic value is 1.831)

$$
\begin{aligned}
f(x) & =\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)\left(x-x_{4}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)\left(x_{0}-x_{3}\right)\left(x_{0}-x_{4}\right)} f_{0}+\ldots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)\left(x-x_{2}\right)\left(x-x_{3}\right)}{\left(x_{4}-x_{0}\right)\left(x_{4}-x_{1}\right)\left(x_{4}-x_{2}\right)\left(x_{4}-x_{3}\right)} f_{4} \\
& =\frac{(0.3-1)(0.3-3)(0.3-4)(0.3-7)}{(-1)(-3)(-4)(-7)}+\frac{(0.3-0)(0.3-3)(0.3-4)(0.3-7)}{1 \times(-2)(-3)(-6)}
\end{aligned}
$$

$(0.3-0)(0.3-1)(0.3-4)(0.3-7)$
$\frac{(0.3-0)(0.3-1)(0.3-4)(0.3-7)}{3 \times 2 \times(-1)(-4)} 49+\frac{(0.3-0)(0.3-1)(0.3-3)(0.3-7)}{4 \times 3 \times 1(-3)} 129+$

$$
(0.3-0)(0.3-1)(0.3-3)(0.3-4)
$$

$7 \times 6 \times 4 \times 3$

$$
=1.831
$$

Question 2: Find the value of y at $x=0$ given some set of values $(-2,5),(1,7),(3,11),(7,34)$?
Solution:

$$
\begin{aligned}
& \text { The known values are, } \\
& x=0 ; x_{0}=-2 ; x_{1}=1 ; x_{2}=3 ; x_{3}=7 ; y_{0}=5 ; y_{1}=7 ; y_{2}=11 ; y_{3}=34 \\
& \text { Using the interpolation formula, } \\
& y=\frac{(0-1)(0-3)(0-7)}{(-2-1)(-2-3)(-2-7)} * 5+\frac{(0+2)(0-3)(0-7)}{(1+2)(1-3)(1-7)} * 7+\frac{(0+2)(0-1)(0-7)}{(3+2)(3-1)(3-7)} * 11+\frac{(0+2)(0-1)(0-3)}{(7+2)(7-1)(7-3)} * 34 \\
& y=\frac{(-1)(-3)(-7)}{(-3)(-5)(-9)} * 5+\frac{(2)(-3)(-7)}{(3)(-2)(-6)} * 7+\frac{(2)(-1)(-7)}{(5)(2)(-4)} * 11+\frac{(2)(1)(3)}{(9)(6)(4)} * 34 \\
& y=\frac{21}{135} * 5+\frac{42}{36} * 7+\frac{-14}{40} * 11+\frac{6}{216} * 34 \\
& y=\frac{21}{27}+\frac{49}{6}+\frac{-77}{20}+\frac{51}{54} \\
& y=\frac{1087}{180}
\end{aligned}
$$

Unit-03/Lecture-06

3. Find $f(2)$ for the data $f(\mathbf{0})=\mathbf{1}, f(\mathbf{1})=\mathbf{3}$ and $f(\mathbf{3})=\mathbf{5 5}$.

\mathbf{x}	0	$\mathbf{1}$	$\mathbf{3}$
\mathbf{f}	1	3	55

Solution :

$$
\begin{gathered}
f(x)=\frac{\left(x-x_{1}\right)\left(x-x_{2}\right)}{\left(x_{0}-x_{1}\right)\left(x_{0}-x_{2}\right)} f_{0}+\ldots+\frac{\left(x-x_{0}\right)\left(x-x_{1}\right)}{\left(x_{2}-x_{0}\right)\left(x_{2}-x_{1}\right)} f_{2} \\
f(2)=\frac{(2-1)(2-3)}{(0-1)(0-3)} 1+\frac{(2-0)(2-3)}{(1-0)(1-3)} 3+\frac{(2-0)(2-1)}{(3-0)(3-1)} 55
\end{gathered}
$$

$$
f(2)=21
$$

4. Find $f(3)$ for

$$
f(3)=10
$$

$$
\begin{aligned}
& \begin{array}{ccccccc}
\mathrm{x} & 0 & 1 & 2 & 4 & 5 & 6 \\
\mathrm{f} & 1 & 14 & 15 & 5 & 6 & 19
\end{array} \\
& f(3)=\frac{(3-1)(3-2)(3-4)(3-5)(3-6)}{(0-1)(0-2)(0-4)(0-5)(0-6)} 1+\frac{(3-0)(3-2)(3-4)(3-5)(3-6)}{(1-0)(1-2)(1-4)(1-5)(1-6)} 14+ \\
& \frac{(3-0)(3-1)(3-4)(3-5)(3-6)}{(2-0)(2-1)(2-4)(2-5)(2-6)} 15+\frac{(3-0)(3-1)(3-2)(3-5)(3-6)}{(4-0)(4-1)(4-2)(4-5)(4-6)} 5+ \\
& \frac{(3-0)(3-1)(3-2)(3-4)(3-6)}{(5-0)(5-1)(5-2)(5-4)(5-6)} 6+\frac{(3-0)(3-1)(3-2)(3-4)(3-5)}{(6-0)(6-1)(6-2)(6-4)(6-5)} 19
\end{aligned}
$$

	Unit-03/Lecture-06					
5. Find $\mathbf{f}(\mathbf{0 . 2 5})$ for						
	\mathbf{x}	0.1	0.2	0.3	0.4	
	f	$\mathbf{9 . 9 8 3 3}$	4.9667	$\mathbf{3 . 2 8 3 6}$	$\mathbf{2 . 4 3 3 9}$	
					1.9177	

By Lagrange's formula :

$\mathrm{f}(\mathbf{0 . 2 5})=$
$\frac{(.25-.2)(.25-.3)(.25-.4)(.25-.5)}{(.1-.2)(.1-.3)(.1-.4)(.1-.5)} \quad 9.9833+\frac{(.25-.1)(.25-.3)(.25-.4)(.25-.5)}{(.2-.1)(.2-.3)(.2-.4)(.2-.5)} 4.9667+$
$(.25-.1)(.25-.2)(.25-.4)(.25-.5)$
$(.3-.1)(.3-.2)(.3-.4)(.3-.5)$

$f(0.25)=3.912$

S.NO	RGPV QUESTIONS							Year	Marks
Q. 1	Find the cubic polynomial ehich takes the following values:							$\begin{aligned} & \text { RGPV DEC } \\ & 2014 \end{aligned}$	2
	X	0	1	2	3				
	$\mathrm{F}(\mathrm{x})$				10				
	Estimate the weight of the baby at the age of 7 months.								
Q. 2	Apply Lagrange's formula to find f(15), if :							RGPV DEC 2010	7
	X	10	12	14	16	18	20		
	F(x)	2420	1942	1497	1109	790	540		

Unit-03/Lecture-07
Divided difference formula

Newton Divided Difference Table:

It may also be noted for calculating the higher order divided differences we have used lower order divided differences. In fact starting from the given zeroth order differences ${ }^{f\left[\mathrm{x}_{\mathrm{i}}\right]} ; i=0,1, \ldots, \mathrm{n}$, one can systematically arrive at any of higher order divided differences. For clarity the entire calculation may be depicted in the form of a table called

Newton Divided Difference Table.

Again suppose that we are given the data set ${ }^{\left(x_{i}, f_{i}\right)}, \quad i=0 \ldots \ldots . .5$ and that we are interested in finding the $5^{\text {th }}$ order Newton Divided Difference interpolynomial. Let us first construct the Newton Divided Difference Table. Wherein one can clearly see how the lower order differences are used in calculating the higher order Divided Differences:

Example: Construct the Newton Divided Difference Table for generating Newton interpolation polynomial with the following data set:

| i | 0 | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| x_{i} | 0 | 1 | 2 | 3 | 4 |
| $y_{i}=f\left(x_{i}\right)$ | 0 | 1 | 8 | 27 | 64 |

Solution:

Here ${ }^{n=5}$. One can fit a fourth order Newton Divided Difference interpolation polynomial to the given data. Let us generate Newton Divided Difference Table; as requested.

Note: One may note that the given data corresponds to the cubic polynomial x^{3}. To fit such a data $3^{\text {rd }}$ order polynomial is adequate. From the Newton Divided Difference table we notice that the fourth order difference is zero. Further the divided differences in the table can be directly used for constructing the Newton Divided Difference interpolation polynomial that would fit the data.

Exercise: Using Newton divided difference interpolation polynomial , construct polynomials of degree two and three for the following data:
(1) $f(8.1)=16.94410, f(8.3)=17.56492, f(8.6)=18.50515, f(8.7)=18.82091$.

Also approximate $f(8.4)$.
(2) $f(0.6)=-0.17694460, f(0.7)=0.01375227, f(0.8)=0.22363362, f(1.0)=0.65809197$.

Also approximate $f(0.9)$.

S.NO	RGPV QUESTIONS						Year	Marks
Q. 1	Apply Newton's divided difference formula to find the value of $f(9)$ from the following table:						RGPV JUNE 2014, DEC 2013, JUNE 2010	7
	X	5	7	11	13	17		
	F(x)	150	392	1452	2368	5202		
Q. 2	Using Newton's divided difference formula to find the value of $f(9)$ from the following table:						RGPV DEC 2010	7
	X	3	5	11	27	34		
	F(x)	-13	23	899	17315	35606		

Numerical Differentiation

\rightarrow Newton's Forward Difference Formula To Get The

Derivative -

By Newton's Forward difference interpolation formula.

$$
\begin{aligned}
f(x)= & f(a+p h)=f(a)+p \Delta f(a)+p \frac{p(p-1)}{2!} \Delta^{2} f(a) \\
& +\frac{p(p-1)(p-2)}{3!} \Delta^{3} f(a)+\frac{p(p-1)(p-2)(p-3)}{4!} \Delta^{4} f(a)+ \\
& \frac{p(p-1)(p-2)(p-3)(p-4)}{5!} \Delta^{5} f(a)+\ldots(1)
\end{aligned}
$$

$$
\text { where } p=\frac{x-a}{h}
$$

Differentiating (i) w.r.t to p, we get

$$
\begin{aligned}
& f^{\prime}(x)=f^{\prime}(a+p h)(h)=\Delta f(a)+\frac{2 p-1}{2!} \Delta^{2} f(a)+\frac{3 p^{2}-6 p+2}{3!} \Delta^{3} f c a \\
&+\frac{4 p^{3}-18 p^{2}+22 p-6}{4!} \Delta^{4} f(a)+\frac{5 p^{4}-40 p^{3}+105 p^{2}-100 p+24}{5!} \\
& \Delta^{5} f(a)+\ldots
\end{aligned}
$$

$$
\Rightarrow f^{\prime}(x)=f^{\prime}(a+p n)=\frac{1}{n}\left[\Delta f(a)+\frac{2 p-1}{2} \Delta^{2} f(a)+\frac{3 p^{2}-6 p+2}{6} \Delta^{3} f(a)\right.
$$

$$
+\frac{4 p^{3}-18 p^{2}+22 p-6}{4!} \Delta^{4} f(a)+\frac{5 p^{4}-40 p^{3}+105 p^{2}-100 p+24}{5!} \Delta^{5} f
$$

Again differentiating (2) w.r.t. ' p ', we get
$f^{\prime \prime}(a+p n) n=\frac{1}{n}\left[\Delta^{2} f(a)+(p-1) \Delta^{3} f(a)+\frac{12 p^{2}-36 p+22}{4!} \Delta^{4} f(a)+\frac{2 p^{3}-12 p^{2}+21 p-}{12}\right.$

$$
\left.\Delta^{5} f(a)+\ldots\right]
$$

$$
\begin{aligned}
f^{\prime \prime}(x)=f^{\prime \prime}(a+p n)= & \frac{1}{n^{2}}\left[\Delta^{2} f(a)+(p-1) \Delta^{3} f(a)+\frac{6 p^{2}-18 p+11}{12} \Delta^{4} f(a)\right. \\
& \left.+\frac{2 p^{3}-12 p^{2}+21 p-10}{12} \Delta^{5} f(a)+\cdots\right]
\end{aligned}
$$

$\ldots .(3)$

Equating (2) and (3) are the formulate to find out the derivatives.

Unit-03/Lecture-08

EXAMPLE:. Find the first and Secound derivatives of the function $f(x)$ at the point $x=1.1$:

x	1	1.2	1.4	1.6	1.8	2.00
$f(x)$	0.00	0.1280	0.5440	1.2960	1.4320	4.000

(R.G.P.Y. Bhopal III Se m, feb 2010)

Solution:

$$
\begin{aligned}
f^{\prime}(a+p h)-\frac{1}{n}\left[\Delta f(a)+\frac{2 p-1}{2} \Delta^{2} f(a)\right. & +\frac{3 p^{2}-6 p+2}{6} \Delta^{3} f(a)+\frac{4 p^{3}-18 p^{2}+22 p-6}{24} \Delta^{4} f 0 \\
& \left.+\frac{5 p^{4}-40 p^{3}+105 p^{2}-100 p+24}{120} \Delta^{5} f(a)\right]
\end{aligned}
$$

$$
f^{\prime}(1.1)=\frac{1}{0.2}\left[0.1280+\frac{1-1}{2}(0.2880)+\frac{3(0.5)^{2}-6 \times 0.5+2}{6}(0.0480)\right.
$$

$$
+\frac{4(0.5)^{3}-18(0.5)^{2}+22(0.5)-6}{24}(-1)+\frac{5(0.5)^{4}-40(0.5)^{3}+105(0.5)^{2}}{120}
$$

$$
\ldots-100(0.5)+24 \text { (5) }]
$$

$$
\begin{gathered}
=\frac{1}{0.2}\left[0.1280+0+\frac{0.75-3+2}{6}(0.048)-\frac{0.5-4.5+11-6}{24}\right. \\
\left.+\frac{0.3125-5+26.25-50+24}{120}(5)\right]
\end{gathered}
$$

Unit-03/Lecture-8									
$\begin{aligned} & =\frac{1}{0.2}[0.1280-0.002-0.0417-0.1849] \\ & =5[-0.1006]=-0.5030 \end{aligned}$ Hence, first derivative of the function $f(x)$ is -0.5030 when $x=1.1$. $\begin{aligned} & (a+p h)=\frac{1}{n^{2}}\left[\Delta^{2} f(a)+\frac{6 p-6 \Delta^{3} f(a)+\frac{\left(2 p^{2} 3(p+22\right.}{6} \Delta^{4} f(a)}{24}\right. \\ & \left.\quad \quad+\frac{2 p^{3}-12 p^{2}+21 p-10}{12} \Delta^{5} f(a)\right] \\ & (1.1)=\frac{1}{(0.2)^{2}}\left[0.2880+\frac{0.5-1}{1}(0.0480)+\frac{6(0.5)^{2}-18(0.5)+11}{12}(-1)\right. \\ & \left.\quad+\frac{2(0.5)^{3}-12(0.5)^{2}+21(0.5)-10}{12}(5)\right] \\ & =25\left[0.2880-0.5(0.0480)-\frac{3.5}{12}-\frac{2.25}{12}(5)\right] \\ & =25[0.288-0.024-0.2917-0.9375] \\ & =25[-0.9652] \\ & =-24.13 \end{aligned}$									
S.NO				V QUES	IONS			Year	Marks
Q. 1	Find $\frac{d y}{d x}$ at $\mathrm{x}=1.1$ from the following table:							RGPV JUNE 2014	7
Q. 2	Find $\frac{d y}{d x}$ at $\mathrm{x}=1.5$ from the following table:							RGPV JUNE 2011	7

Unit-03/Lecture-9
\Rightarrow Numerical Differentiation (Backward Differences)
Newton's formula for backward difference is

$$
\begin{aligned}
& f(a+p h)=f(a)+p \nabla f(a)+\frac{p(p+1)}{2!} \nabla^{2} f(a)+\frac{p(p+1)(p+2)}{3!} \nabla^{3} f(a) \\
& +\frac{p(p+1)(p+2)(p+3)}{4!} \nabla^{4} f(a) \\
& =f(a)+p \nabla f(a)+\frac{p^{2}+p}{2!} \nabla^{2} f(a)+\frac{p^{3}+3 p^{2}+2 p}{3!} \nabla^{3} f(a) \\
& +\frac{p^{4}+6 p^{3}+11 p^{2}+6 p}{4!} \nabla^{4} f(a)+\ldots . .
\end{aligned}
$$

Differentiating with respect to p, we get

$$
\begin{aligned}
& h f^{\prime}(a+p h)= \nabla f(a)+\frac{2 p+1}{2!} \nabla^{2} f(a)+\frac{3 p^{2}+6 p+2}{3!} \nabla^{3} f(a) \\
& f^{\prime}(a+p h)=\frac{1}{h}\left[\nabla f(a)+\frac{2 p+1}{2} \nabla^{2} f(a)+\frac{3 p^{2}+6 p+2}{6} \nabla^{3} f(a)\right. \\
&\left.+\frac{2 p^{3}+9 p^{2}+11 p+3}{12} \nabla^{4} f(a)+\ldots\right]
\end{aligned}
$$

If we xplace x by x_{p} and a by x_{n}, then we get

$$
\begin{gathered}
f^{\prime}(x)=f^{\prime}\left(x_{n}+p h\right)=\frac{1}{h}\left[\nabla f\left(x_{n}\right)+\frac{2 p+1}{2} \nabla^{2} f\left(x_{n}\right)+\frac{3 p^{2}+6 p+2}{6} \nabla^{3} f\left(x_{n}\right)+\right. \\
\frac{2 p^{3}+9 p^{2}+11 p+3}{12} \nabla^{4} f\left(x_{n}\right)+\ldots
\end{gathered}
$$

Again differentiating with respect to p, we get

$$
f^{\prime \prime}(a+p h)=\frac{1}{h^{2}}\left[\nabla^{2} f(a)+(p+1) \nabla^{3} f(a)+\frac{6 p^{2}+18 p+11}{12} \nabla^{4} f(a)+\ldots\right]
$$

Again we put x_{p} for x and x_{n} for a, we get.

$$
f^{\prime \prime}\left(x_{p}\right)=f^{\prime \prime}\left(x_{n}+p n\right)=\frac{1}{n^{2}}\left[\nabla^{2} f\left(x_{n}\right)+(p+1) \nabla^{3} f\left(x_{n}\right)+\frac{6 p^{2}+18 p+11}{12} \nabla^{4} f\left(x_{n}\right)+\right.
$$

Similarly, $f^{\prime \prime}(a+p h)=\frac{1}{n^{3}}\left[\nabla^{3} f(a)+\frac{2 p+3}{2} \nabla^{4} f(a)+\ldots\right]$

Unit-03/Lecture-9

EXAMPLE: Given that

x	1.0	1.1	1.2	1.3	1.4	1.5	1.6
y	7.989	8.403	8.781	9.129	9.451	9.750	10.031

SoluTION: The difference table is as under

x	y	Δy	$\Delta^{2} y$	$\Delta^{3} y$	$\Delta^{4} y$	$\Delta^{5} y$	$\Delta^{6} y$
1.0	7.989						
1.1	8.403	0.414	-0.036				
1.2	8.781	0.378	-0.030	0.006	-0.002		
1.3	9.129	0.348	-0.026	0.004	-0.001	0.001	0.002

1.4	9.451			
1.5	9.750	0.299	-0.023	0.005
1.6	10.031	0.281	-0.018	

$a=1.1, \quad x=1.1, \quad h=0.1$
$x=a+p h \Rightarrow 1.1=1.1+p(0.1)=p \Rightarrow 0$
$\frac{d y}{d x}=\frac{1}{h}\left[\Delta y+\frac{1}{2!}(2 p-1) \Delta^{2} y+\frac{1}{3!}\left(3 p^{2}-6 p+2\right) \Delta^{3} y+\frac{\left(4 p^{3}-18 p^{2}+22 p-6\right)}{4!} \Delta^{\prime}\right.$
$+\frac{5 p^{4}-40 p^{3}+\cos p^{2}-100 p+24}{5!} \Delta^{5} y+$
$\frac{6 p^{5}-75 p^{4}+340 p^{3}-675 p^{2}+548 p-120}{6!} \Delta^{6} y+\ldots$
On putting the value of $p=0$. in (1) we get
$\frac{d y}{d x}=\frac{1}{h}\left[\Delta y-\frac{1}{2} \Delta^{2} y+\frac{1}{3} \Delta^{3} y-\frac{1}{4} \Delta^{4} y+\frac{1}{5} \Delta^{5} y-\frac{1}{6} \Delta^{6} y+\ldots\right]$
Putting the values of $h, \Delta y, \Delta^{2} y, \Delta^{3} y, \Delta^{4} y, \Delta^{5} y$ and $\Delta^{6} y$ in (2), we get $\left(\frac{d y}{d x}\right)_{1-1}=\frac{1}{0.1}\left[0.378-\frac{1}{2}(-0.03)+\frac{1}{3}(0.004)-\frac{1}{4}(-0.001)+\frac{1}{5}(0.003)+..\right]$
$=\frac{1}{0.1}[0.378+0.015+0.0013+0.0003+0.0006]$
$=\frac{1}{0.1}[0.3952]=3.952$ Ans.

Unit-03/Lecture-9

$$
\begin{aligned}
\frac{d^{2} y}{d x^{2}}=\frac{1}{n^{2}}\left[\Delta^{2} y+(p-1) \Delta^{3} y\right. & +\frac{6 p^{2}-18 p+11}{12} \Delta^{4} y+\frac{2 p^{3}-12 p^{2}+21 p-10}{12} \Delta^{5} y \\
& \left.+\frac{15 p^{4}-150 p^{3}+510 p^{2}-675 p+274}{360} \Delta^{6} y+\cdots\right]
\end{aligned}
$$

when $p=0, \frac{d^{2} y}{d x^{2}}=\frac{1}{h^{2}}\left[\Delta^{2} y-\Delta^{3} y+\frac{11}{12} \Delta^{4} y-\frac{5}{6} \Delta^{5} y+\frac{137}{180} \Delta^{6} y+..\right] \ldots$ (3)
On putting the value of $\Delta^{2} y, \Delta^{3} y, \Delta^{4} y, \Delta^{5} y$. etc in (3), we get

$$
\begin{aligned}
\left(\frac{d^{2} y}{d x^{2}}\right)_{1.1} & =\frac{1}{(011)^{2}}\left[-0.030-0.004+\frac{11}{12}(-0.001)-\frac{5}{6}(0.003)\right] . \\
& =\frac{1}{0.01}[-0.030-0.004-0.009-0.0025]=\frac{1}{0.01}[-0.0374] \\
& =-3.74 \text { Ans. }
\end{aligned}
$$

ii) To find out $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ at $x=1.6$ we have to use Newton's backward interpolation formula.
Since 1.6 is the end of the given data

$$
\frac{d y}{d x}=\frac{1}{n}\left[\nabla y+\frac{2 p+1}{2!} \nabla^{2} y+\frac{3 p^{2}+6 p+2}{3!} \nabla^{3} y+\frac{2 p^{3}+9 p^{2}+11 p+3}{12} \nabla^{4} y+\ldots\right]
$$

$$
\text { when } p=0, \frac{d y}{d x}=\frac{1}{n}\left[\nabla y+\frac{1}{2} \nabla^{2} y+\frac{1}{3} \nabla^{3} y+\frac{1}{4} \nabla^{4} y+\frac{1}{5} \nabla^{5} y+\frac{1}{6} \nabla^{6} y\right] \ldots
$$

On putting the values of $h, \nabla y, \nabla^{2} y, \nabla^{3} y, \nabla^{4} y, \nabla^{5} y$ in (4), ur e get

$$
\left(\frac{d y}{d x}\right)_{1.1}=\frac{1}{0.1}\left[0.281+\frac{1}{2}(-0.018)+\frac{1}{3}(0.005)+\frac{1}{4}(0.002)+\frac{1}{5}(0.003)+\frac{1}{6}(0.002\right.
$$

$$
=\frac{1}{0.1}[0.281-0.009+0.0017+0.0005+0.0006+0.003]
$$

$$
=\frac{1}{0.1}[0.2751]=2.751 \quad \text { Ans. }
$$

$$
\frac{d^{2} y}{d x^{2}}=\frac{1}{n^{2}}\left[\nabla^{2} y+(p+1) \nabla^{3} y+\frac{6 p^{2}+18 p+11}{12} \nabla^{4} y+\cdots \cdot\right]
$$

$$
\text { when } p=0,\left(\frac{d^{2} y}{d x^{2}}\right)=\frac{1}{h^{2}}\left[\nabla^{2} y+\nabla^{3} y+\frac{11}{12} \nabla^{4} y+\frac{5}{6} \nabla^{5} y+\frac{137}{180} \nabla^{6} y\right]
$$

$$
=\frac{1}{(\operatorname{cod})^{2}}\left[-0.018+0.005+\frac{11}{12}(0.002)+\frac{5}{6}(0.003)+\frac{137}{180}(0.002)\right]
$$

$$
=\frac{1}{(0.01)}[-0.018+0.005+0.0018+0.0025+0.0015]
$$

$$
=\frac{1}{(0.01)}[-0.0072]=-0.72 \quad \text { Ans }
$$

Unit-03/Lecture-10

ExAMPLE : Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using Simpson's $\left(\frac{1}{3}\right)$ rote. Hence obtain the appropriate value of π dividing the range into 6 equal parts. CR.G.P.V, Bhopal, Ill sem. Dec 2001)

Solution - We divide the range of integration into 6 equal parts by taking $h=\frac{1-0}{6}=\frac{1}{6}$.
Now, the value of given function $y=\left\{\frac{1}{1+x^{2}}\right\}$ is given as below for each point of Sob division.

x	0	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	1
$\frac{1}{1+x^{2}}$	$1,00,000$	$\frac{36}{37}=0.97297$	$\frac{36}{40}=0.90000$	$\frac{36}{45}=0.80000$	$\frac{36}{52}=0.69231$	$\frac{36}{61}=0.59016$	$\frac{1}{2}=0.50001$
y	y_{0}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}
By Simpson's one third Rule							

$$
\begin{aligned}
& \int_{x_{0}}^{x_{0}+n h} y d x=\frac{n}{3}\left[\left(y_{0}+y_{n}\right)+2\left(y_{2}+y_{4}+\ldots\right)+4\left(y_{1}+y_{3}+\ldots\right)\right] \\
& \int_{0}^{1} \frac{1}{1+x^{2}} d x=\frac{6}{3}[(1.0000+0.50000)+2(0.90000+0.69231)+4(0.97297+0.80000+ \\
& 0.59016)]
\end{aligned}
$$

$$
=\frac{1}{18}[1.50000+2(1.59231)+4(0.36313)]
$$

$$
=\frac{1}{18}[1.50000+3.18462+9.45252]
$$

$$
\begin{equation*}
=\frac{1}{18}(14.13714)=0.78539667 \tag{1}
\end{equation*}
$$

Again $\int_{0}^{1} \frac{1}{1+x^{2}} d x=\left(\tan ^{-1} x\right)_{0}^{1}=\left(\tan ^{-1} 1\right)=\frac{\pi}{4} \quad \ldots$ (2) from (1) and (2), we have

$$
\frac{\pi}{4}=0.78539667 \Rightarrow \pi=3.14158668
$$

Hence, value of $\pi=3.14158668$ approximately

Unit-03/Lecture-10

EXAMPLE. A river is 80 metres wide. The depth d (in metres) of the stiver at a distances x from the bank is given by the following table:

x	0	10	20	30	40	50	60	70	80
d	0	4	7	9	12	15	14	8	3
y	y_{6}	y_{1}	y_{2}	y_{3}	y_{4}	y_{5}	y_{6}	y_{7}	y_{8}
find approximately the area of cross - section of the river using									
Simpson's (8) rule.									

SOLUTION: By Simpson's ($\frac{3}{8}$)role, the area of cross-section of the

$$
\begin{aligned}
& \quad \text { river }=\int_{0}^{60} f(x) d x \\
& =\int_{0}^{80} y d x=\frac{3 h}{8}\left[\left\{y_{0}+y_{8}\right\}+3\left\{y_{1}+y_{2}+y_{4}+y_{5}+y_{7}\right\}+2\left\{y_{3}+y_{6}\right\}\right] \\
& =\frac{3}{8} \times 10[(0+3)+3(4+7+12+15+8)+2(9+14)] \\
& \quad[\text { Here } y=d, h=10]
\end{aligned}
$$

$=\frac{30}{8}[3+138+146]$
$=\frac{30}{8}(187)$
$=701.25$ square metres

- 701 square metres (approx)

Hence, the area of Cross-Section of the river is 701.59. metros(apprac.)

Unit-03/Lecture-10							
EXAMPLE: Evaluate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ by using simpson's $\frac{3}{8} \mathrm{~km}$ role. Hence obtain the appaoximate value of π, dividing the range into 6 equal pants. CRGPY, Bhopal III Sem Dec.2011)							
x	0	$\frac{1}{6}$	$\frac{2}{6}$	$\frac{3}{6}$	$\frac{4}{6}$	$\frac{5}{6}$	1
$\frac{1}{1+x^{2}}$	1,0000	$\frac{36}{31}=0.97297$	$\frac{36}{40}=0.90000$	$\frac{3 x}{45}=0.80000$	$\frac{36}{52}=0.69231$	$\frac{36}{61}=0.55016$	$\frac{1}{2}=0.50000$
y	yo	y,	y_{2}	${ }_{3}$	y_{4}	y_{5}	y_{6}
By simpson's $\frac{3}{8}$ rule, $\begin{align*} \int y d x & =\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\ldots+y_{n-1}\right)+2\left(y_{3}+y_{6}+\ldots y_{n-3}\right]\right. \\ & =\frac{3\left(\frac{1}{6}\right)}{8}[1.0000+0.50000+3(0.97297+0.90000+0.69231+0.59016)+ \\ & \quad 2(0.8000)] \\ & =\frac{1}{16}[1.50000+3(3.15544)+2(0.80000)] \\ & =\frac{1}{16}[1.50000+9.46632+1.60000] \\ & =\frac{1}{16}[12.56632] \tag{a}\\ & =0.785395 \end{align*}$ Again $\int_{0}^{1} \frac{d x}{1+x^{2}}=\left(\tan ^{-1} x\right)_{0}^{1}=\left(\tan ^{-1} 1\right)=\frac{\pi}{4} \ldots$ (2) from (1) and (2), we have $\frac{\pi}{4}=0.785395 \Rightarrow \pi=3.14158$ Ans. Hence the approximate value of $\bar{\pi}$ is 3.1415%.							

