ENGG. MATHEMATICS III SUBJECT CODE- BE-3001
Unit-1
Fourier series

Syllabus:
Fourier Series: Introduction of Fourier series , Fourier series for Discontinuous functions, Fourier series for

even and odd function, Half range series.

Fourier series
Introduction

A Taylor series is an infinite series of the form
f)=>a,x"
n=0

where a,, a1, a2, ... are constants, called the coefficients of the series. A Taylor series does not include terms

with negative powers. A Fourier series is an infinite series expansion in terms of trigonometric functions

fix)=ao0+ i (a, cos(nx) +b, sin( nx))

n=l
Any piecewise smooth function defined on a finite interval has a Fourier series expansion.

Periodic Functions
A function satisfying the identity f(x) = f(x + T) for all x, where T > 0, is called periodic or T-periodic as shown in

figure:

\ 4

Figure A T-periodic function.

For a T-periodic function
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fiX)=flx+T) = fix+2T) = fix + 3T) = ... =f(x +nT)

If T is a period then nT is also a period for any integer n > 0. T is called a fundamental period. The definite
integral of a T-periodic function is the same over any interval of length T. Example 2.1-1 will use this property
to integrate a 2-periodic function shown in figure.

Example.1: Let f be the 2-periodic function and N is a positive integer. Compute J.A:sz(x)dx if fix)=—x+1

ontheinterval 0 < x <2
N
y

-1
Figure A 2-periodic function.

Solution

[ feode = [ e [ @decs o [ ode

2

I_NNfz(x)dx = NI:_zfz(X)dx = Nj:(—x+1)2dx = N{—%(—x + 1)3}

0

N _ N 52
j_Nf(x)dx == SE1-1=2N

The most important periodic functions are those in the (2r-period) trigonometric system

1, cos x, cos 2x, cos 3x, ..., cosmx, ...,
sin x, sin 2x, sin 3x, ..., sinnx, ...,

Orthogonal functions
b
If .[ f(x)g(x)dx=0then fand g are orthogonal over the interval [a, b].
Examples of orthogonal functions:

T
_[ COs mx cos nxdx =0form#n

T

=nform=n
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T
Ismmxsmnxdx =0form#n
T
=nform=n
T
.[ cos mx sin nxdx =0forallmandn
-

Fourier series are special expansions of functions of the form

fix)=ao+ i (a, cos(nx) +b, sin( nx))

n=l

where the coefficients ao, a1, a2, ..., b1, b2, ... must be evaluated.

The coefficient ao is determined by integrating both sides of Eq. (2.1-1) over the interval [-~, 7].

[" reodx=["aydx + 3, [ (@, cosnx) +b,sin(nx))dx
- - el -
Since [ cosnxdx= [ sin nxdx=0forn=1,2, ...

[ reode= [ agdx =2na0=> a0 = i [ feodx

The coefficient an is determined by multiplying both sides of Eq. with cos mx and integrating the resulting

equation over the interval [-m, 7).

[* reocostmuydx= [* a, cos(mxydx + i j” a, cos(nx) cos(mx)dx

n=1

+ z J: b, sin( nx) cos(mx)dx
n=I1

T T T
Slncej cos mxdx= O,.[ cos mx sin nxdx= 0 for all m and j cosmxcosnxdx=0form#n
- -

-

j” f(x)cos(mx)dx = an j” (cos nx)> dx = Tan
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1 T 1 27
On = —J- f(x)cos(mx)dx = —I f(x)cos(mx)dx
T 7T 0

Similarly the coefficient b, is determined by multiplying both sides of Eq. with sin mx and integrating the
resulting equation over the interval [-7, 7).

bn_l

T

[ Feosincmnde= L[ f (o singmyd

Example.2: Solve the one dimensional heat equation with no heat generation, zero boundary conditions (0°C),
and constant initial temperature of 100°C.

Solution

The partial differential equation for one-dimensional heat conduction is

oT 0T
— =k— +Q(x, t
P ot ox* Qlx )
Since there is no heat generation Q(x, t) =0
2 2
pCpa—T= 6_538_T=a8_72" whereoc=L
ot ox ot ox pC,

The boundary and initial conditions are
7(0, t) = T(L, t) = 0°C; T(x, 0) = 100°C.

The solution for the temperature is

. 2
nx nr
T(x, t) = E b, sin —exp —(—j ot
o L { L

Att=0, T(x,0)=100= Y b, sin%
n=1
This is the Fourier sine series (with ao, a1, a2, ... = 0) where the coefficients b1, b,, ... can be determined by by

multiplying both sides of the above equation with sin mx and integrating the resulting equation over the
interval [O, L].

2 L
100 [ sin P dv= Y b, [ sin ™ Fsin T dy
n=1
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L
Since IO sin %sin %dx =0form#n

2
100 IOL sin % dx =bn LL (sin %) dx

1—cos?2
Using the identity sin’x = % , the above equation becomes

L
1OOL —cos@ =bnrl(1—cosznﬂx) dx
nrw L ], 02 L

L
100 L - cosnz +1]= 2 {x—ism(z’”xﬂ _ by
niw

bn = @ [1—-cosnrx]
nr

Forn=even, cos(nm)=1=b,=0

Forn=odd, cos(nz)=—1= b, = 400
niw

The Fourier expansion for 100 is then given by

(2n —1)mx 400

x)=100= ) b, ,sin where by = ————
76 ; ! i 2n-Dr

2n-1)

51
The plot of f(x) = szm sin ™ for 51 terms is a good approximation of 100 away from the end points

n=1
as shown in Figure 2.1-1. There is a 18 % overshoot called Gibbs phenomenon near the end points. Gibbs
phenomenon occurs only when a finite series of eigenfunctions approximates a discontinuous function.
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120 . . . .

100 |

80

60 |

40 1

Fourier expansion of 100

20

0 1 1 1 1
0 0.2 04 0.6 0.8 1

x/L

< . 2n-1
Figure. points approximation of f(x) = 100 = szm sin M

n=1

Definition 1 (Periodic functions)
A function f(t) is said to have a period T or to be periodic with period T if for all t, f(t+T)=f(t), where Tis a
positive constant. The least value of T>0 is called the principal period or the fundamental period or simply the

period of f(t).
Example3.
_ 27, 4, 6w, . . . gin(z + 2m),sin(z + 4x), sin(z + 67),.. .

The function st Zhas periods , since all equal
sin .
Example4.

acR F(t) := f(wt) := f(31)
Let . If f(x) has the period 2mthen has the period T. (substitute
Brg . — 2
Tti=2, w:i= ?)
Example5.

If f has the period T then

fn " e = fu " f6)dt VacR
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Definition (Periodic expansion)

f
Let a function f be declared on the interval [0,T). The periodic expansion of fis defined by the formula
= F(t) 0<t<T
ft)=14%
f(t—T) ¥teR

L\ ’\ .
N7 :
Definition (Piecewise continuous functions)

A function f defined on I=[a,b] is said to be piecewise continuous on / if and only if

(i)

A=< B < T <...<Z,=0b

there is a subdivision such that fis continuous on each subinterval
Iy ={z:zr1 <z <z}
and
(ii)
Ty, Tq,...,Ly,
at each of the subdivision points both one-sided limits of f exist.
Theorem
I =[—m,m]
Let f be continuous on . Suppose that the series
o
ap '
5> + Z(an cos nx + b, sinnzx) (1)
n=1
zel
converges uniformly to f for all . Then

1 o
a,l:;f f(t)cosntdt n=0,1,2,...

1 /™ (2)
b,‘=;f f(t)sinntdt n=1,2,...
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Definition (Fourier coefficients, Fourier series)

The numbers a, and b, are called the Fourier coefficients of f. When a, and b, are given by (2), the
trigonometric series (1) is called the Fourier series of the function f.

Remark

If fis any integrable function then the coefficients a, and b, may be computed. However, there is no assurance
that the Fourier series will converge to fif f is an arbitrary integrable function. In general, we write

fz) ~ Z—O + i{aﬂma nz + b, sin nz)

n=1

to indicate that the series on the right may or may not converge to f at some points.
Remark (Complex Notation for Fourier series)
Using Euler's identities,

e? = cosf + isinf

where i is the imaginary unit such that °=-1, the Fourier series of f(x) can be written in complex form as

o0
f@)= ) cpe™ (3)
n=—og
where
1 [T .
= — z)e dx
= o f_ ] f(z) (4)
and
1 1 . 1 .
@=50, &=5(4 =), cn=g(a+ib,), n=12...
a =200, Gp=¢€n+Cq, bn=ilcn—cn), n=12...
Example.6:
Let f(x) be defined in the interval [0,T] and determined outside of this interval by its periodic extension, i.e.
— 2
W= T
assume that f(x) has the period T. The Fourier series corresponding to f(x) (with )is
o
ap .
f(x]~5+2(anmsnw;r+b,‘mnw;r) (5)

n=1
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where the Fourier coefficients a, and b, are

T
Gy = Ef f(z)ecosnwzdz n=0,12,... (6)
T Jo

T
b, = ;f f(z)sinnwzdz n=12,... (7)
0

Example.7:
Let a, and by, be the Fourier coefficients of f. The phase angle form of the Fourier series of fis

1)) =
|~ > +Zc,,,cos(nw;r + &)

n=1

with
ea=+/a+b n=12...
and
.= tan“(-ﬁ}, n=12 ...
n
Example.8:

We compute the Fourier series of the function f given by

f($]={1 0<z<m

-1 a#<z<2nw

f(z)cos nz
Since fis an odd function, so is , and therefore

an =0, n=1223,...

ao=0
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n=>1
For the coefficient b, is given by

1 T T 4 nodd
b, = — f gin nedr — ginne | =4 ™
T \Jo T 0, neven

It follows
ging sindx sindx

4
f“;(

+
1 3 ]

Dirichlet conditions
It is important to establish simple criteria which determine when a Fourier series converges. In this section we
will develop conditions on f(x) that enable us to determine the sum of the Fourier series. One quite useful
method to analyse the convergence properties is to express the partial sums of a Fourier series as integrals.
Riemann and Fejer have since provided other ways of summing Fourier series. In this section we limit the
study of convergence to functions that are piecewise smooth on a given interval.
Definition (Piecewise smooth function)
A function fis piecewise smooth on an interval if both fand f' are piecewise continuous on the interval.
Theorem
Suppose that f is piecewise smooth and periodic.
Then the series (1) with coefficients (2) converges to
1.

f(x) if x is a point of continuity.

3 (f(z+0) + f(z —0))
if x is a point of discontinuity.
This means that, at each x between -L and L, the Fourier series converges to the average of the left and the
right limits of f(x) at x. If fis continuous at x, then the left and the right limits are both equal to f(x), and the
Fourier series converges to f(x) itself. If f has a jump discontinuity at xthen the Fourier series converges to the
point midway in the gap at this point.

Remark
Let f be a given piecewise continuous function. We say that f is standardised if its values at points x; of
discontinuity are given by
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flz) = [.f(r+ + f(zi—)]

Remark

The conditions imposed on f(x) are sufficient but not necessary, i.e if the conditions are satisfied the
convergence is guaranteed. However, if they are not satisfied the series may or may not converge.
Theorem (Bessel's inequality)

Suppose that fis integrable on the interval [0, T]. Let an, bs, ¢, be the Fourier coefficients of f. Then

o 3 anf2+ Iof?) =2 Z o< 7 2 [ rtopa @

n=1

Theorem (Riemann lemma)
Let f be integrable and a, and b, be the Fourier coefficients of f. Then

lima,= lim &, =0
—o —+00

which means

ff(t cos ntdt = lﬂ‘ﬂjwf(t sinntdt = 0
n—im

Theorem (Parseval's identity)

Tf f () Pdz = 20 +Z(a +b2) (9)

n=1

if a, and b, are the Fourier coefficients corresponding to f(x) and if f(x)satisfies the Dirichlet conditions.

The Gibbs Phenomenon

Near a point, where f has a jump discontinuity, the partial sums S, of a Fourier series exhibit a substantial
overshoot near these endpoints, and an increase in n will not diminish the amplitude of the overshoot,
although with increasing n the the overshoot occurs over smaller and smaller intervals. This phenomenon is
called Gibbs phenomenon. In this section we examine some detail in the behaviour of the partial sums S, of

S(z) = E‘Ll ﬁ]}:ﬁ:

Theorem
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i sin kx m—=z
x

, D<e<2m

k=1

The next step is to replace the partial sums S, with integrals

* sin(2zHe) -z .
T = gy

For & = Owe have a typically "overshoot". This will be the next step to show. Let

1 [™sin(EZE) gin T sin T |
Snlzq) +2;r“ —L Esin(tfi]dt_,/"mn(h+1}(2n+1 d“?‘—}f —dr (n— o0)

Theorem (The Gibbs phenomenon)

ne N Iy = zﬂl;'_l

Let and .

lim i sin(kz,, ) _ f sm*rdq_

e | £ k o T
and

sinT
f —d*r = —.1.1789797..
0
S(x)mm/2 17.9%

Since for x near 0, we see that an "overshoot" by approximately is maintained as 1 — 0O

(but over smaller and smaller intervals centred at x=0).

Page no: 12



ENGG. MATHEMATICS III SUBJECT CODE- BE-3001

L

o3

Often we are interested in properties of a function f, knowing only measured values of f at equally spaced time
intervals

tr=FkAt, kcZ At>0

If this discrete function f has the period T' = N At then fis described by the vector

Yo f(0)
t J(At)
Y= : |~ :
YN J((N =1)At)

Definition (Discrete Fourier coefficient)
Assume T' = 2mthen the Fourier coefficient of y is defined

N-1
1 _gm
¢;,:=§j2=oyje v, k=01..., N-1

Definition (Discrete Fourier transform (DFT))
The mapping F': Cc¥ — €V, defined by

e %
Fly)=c, e=| : |eC", y=| : |ec®

(14)
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is called the discrete Fourier transform (DFT).

NxN
If we use the Fourier-Matrix
1 1 1 sas 1
1 Uy UJ%’ (- uyﬁ_l
mo= |1 wh  owh - wd™Y
1wl 20 L

then we can write (14) as

1
= _F
e= NN
Theorem

It follows, that
EFEyFy=FyFy=NE

i.e.

1
Fj;l:EFN

Definition (Inverse discrete Fourier transform (IDFT))
The inverse mapping y=Fy c is called the inverse discrete Fourier transform (IDFT)

N-1
yj=2¢ktﬁ;, j=01,...,N-1 (15)
k=0

Some properties of the DFT are:
Linearity

oy + Bz 3 ac + Ad

Parseval
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N-1 N

E :|*‘3.r=|2= l E :|!«F.r;=|2
N
k=0 k=0

Theorem (Fast Fourier Transform (FFT))

PR
&= EFNy

IF N is even (N=2M), then y= Fy ¢ (and analog ) can be put down to two discrete transforms.
We divide c in its odd and even indices
e = ({:g,cz,. .. ,cN_z]T e
and
0= (01:*33:- .- }EN—I)T = EH

N-1 M-1 M-1

ik kj ki —

=) whe; =) (wy)¥e; +u* Y (wi)o; k=0,1,...,N -1

j=0 =0 j=0
y is splitted in

a = (yo,2,---,ym—1) € C¥

and

b= (QH} Uri1,- - !yN—l)T € EH

It follows ( wn**M=-wn¥) that
M1 M-

ar = Y (wy)¥e; +w* D (uiy )Mo, k=0,1,...,M -1
J=0 Jj=0

M-1 M-1
b= Y (wh)He; —wh 3 (wh)Ho; k=0,1,..., M1
Jj=0 =0

wn? is an Mth root of unity, so the above sums describe two IDFT
a = FMe + Di'a.g(]-:wﬂ: e ,Wﬁ_IJFMO
b= Fye — Diag(1l,wa, ... ,wy )Fuo
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In order to perform a Fourier transform of length N, one need to do two Fourier transforms Fuy e and Fy 0 of
length M on the even and odd elements. We now have two transforms which take less time to work out. The
two sub-transforms can then be combined with the appropriate factor w* to give the IDFT. Applying this
recursively leads to the algorithm of the Fast Fourier transform (FFT).

The Fourier Series is an infinite series expansion involving trigonometric functions.

A periodic waveform f(t) of period p = 2L has a Fourier Series given by:

== 4 m_ ancosLﬂﬂ- bsm”m
el

_ 4o it 27t 37t
=5 T 1008 T + @y COS S55 + A3 008 S5 .
27t 37t
+ bqgin &L T +b 1 i + b3 sm—L +..

Helpful Revision

Summation Notation (3)

where
an and b, are the Fourier coefficients, and

ao
2

is the mean value, sometimes referred to as the dc level.

Fourier Coefficients For Full Range Series Over Any Range -L TO L

If f(t) is expanded in the range -L to L (period = 2L) so that the range of integration is 2L, i.e. half the range of
integration is L, then the Fourier coefficients are given by

% [* finar

1y

I nnt I . nut
a, = LI_Lﬂf)cos T dr b, LI_LﬂI)sm 7 714

wheren=1,2,3...

NOTE: Some textbooks use
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1 L
Qo = —— j Adt

and then modify the series appropriately. It gives us the same final result.
Dirichlet Conditions

Any periodic waveform of period p = 2L, can be expressed in a Fourier series provided that
(a) it has a finite number of discontinuities within the period 2L;

(b) it has a finite average value in the period 2L;

(c) it has a finite number of positive and negative maxima and minima.

When these conditions, called the Dirichlet conditions, are satisfied, the Fourier series for the function f{(t)
exists.

Each of the examples in this chapter obey the Dirichlet Conditions and so the Fourier Series exists.

Example of a Fourier Series - Square Wave

Sketch the function for 3 cycles:

0 if 4<¢t<0

I=
U 51f 0<¢t<4

fit) = ft + 8)

Find the Fourier series for the function.
Solution:

First, let's see what we are trying to do by seeing the final answer using a LiveMath animation.

Now for one possible way to solve it:
Answer

The sketch of the function:
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AL

i | | | | |
4 | | | | |
.
2
T
27 | | | | |
] | | | | |
1] | | | | |
] | | | | |
— —— —— |y
g 5 g 15 0

We need to find the Fourier coefficients ao, a, and b, before we can determine the series.

f Aty
4j Ap)dt
- Hj (0)dt + | (5)d:)

Lo+[51)

_ 1
- Lo,
5

L {y

Note 1: We could have found this value easily by observing that the graph is totally above the t-axis and
finding the area under the curve from t =4 to t = 4. It is just 2 rectangles, one with height 0 so the area is O,
and the other rectangle has dimensions 4 by 5, so the area is 20. So the integral part has value 20; and 1/4 of
20="5.

Note 2: The mean value of our function is given by ao/2. Our function has value 5 for half of the time and value
0 for the other half, so the value of ao/2 must be 2.5. So ag will have value 5.

These points can help us check our work and help us understand what is going on. However, it is good to see
how the integration works for a split function like this.

Page no: 18



ENGG. MATHEMATICS III SUBJECT CODE- BE-3001

ay = % f(r)cos nat g

= % ﬂf)cos mrf

_ 1 0 i it

= 4( _4(0)005 df+j (5)cos i df)

_ 1 4 o nnt
4(0-&[5”?{3]11 1 :IU)

-1 4 nnt
i X 3% o ([sm 1 :Io)

_ %(Sm%@—m%@)

= 5 o (sinnn — 0)

=0

Note: In the next section, Even and Odd Functions, we'll see that we don't even need to calculate an in this
example. We can tell it will have value 0 before we start.
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N

bﬂ=%_ St sin 2EL iy
= %‘_ f(£)sin BAL ”ﬂ
- H (0)sin ”?fdej (5)sin ”jffd:)
(o Lo ])
=—%x5x%[cos%ﬂ]u
= gﬂ(ms%@)—lj

—iﬂ(cosnﬁr - 1)

At this point, we can substitute this into our Fourier Series formula:

= 4o nnt in B
¥it) 5 +Zlancos T +ansm T

_ 3 - mrf . - Rt

=57 21 (0)cos == + E :'r (cogmm — 1) sm I
5 - 1 _ - 1t

= - = E — (cosnm — 1) sin A

=1

Now, we substitute n =1, 2, 3,... into the expression inside the series:
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n| L = (cosnr — 1)sin ”jfr
1 _ xro_ 9]
1 (cossfr 1) sin == i 2 8in =- 4
2 | L 5 (cos27 — 1)sin 231” =0
1 _ 3t _ 2 . 3mt
3 (cosS:nr 1)sin == 1 3 Sy
4 | L (CDS4?E— 1)sin 4;” =0
_ St _ _2 o Sut
5 5((:055?[ 1)sin =+ ) 5 s,
6 | L < (cos67 — 1)sin 6;” =0
ysin 7EE 2 g Tnt
7 7((:057?{ 1)sin —== 1 > sin 1

Now we can write out the first few terms of the required Fourier Series:

5 - 7t 2 V¥ 2 Sxt
f1=2.5— = | — = - = = — = == .
f() 2.5 (28].‘[1 35111 5S]IL )

10 xwt 1 3mt 1 St
=2.5+ (sm4 +35m—4 +551:r1—4 +.. )

Alternatively, we could observe that every even term is 0, so we only need to generate odd terms. We could
have expressed the b, term as:

b, = —;—H(CDSH?I— 1)
3 #
~ 7 (CD7 = 1)
10

= o7 hodd, (0if zis even)

To generate odd numbers for our series, we need to use:

be = Gn-Tw " b3
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We also need to generate only odd numbers for the sine terms in the series, since the even ones will be 0.

So the required series this time is:

_ Qo nnt o At
fH = 5 +Zlancos T +Zlbnsm T

_ 3 - nnt N 10 . (2n— l)xt
_§+2(0)CDST+ZQH—1)H sin 1
=1 =1

0~ 1 .. (2n-Daxt
2.5+ Z —(2”_ 5 SIM 1

The first four terms series are once again:

Fy=25+ 2 sin T o Lgin 370y L 070 Ly TR
e I S I R R A

[NOTE: Whichever method we choose, n must take values 1, 2, 3, ... when we are writing out the series using
sigma notation.]

What have we done?

We are adding a series of sine terms (with decreasing amplitudes and decreasing periods) together. The
combined signal, as we take more and more terms, starts to look like our original square wave:

10 .1 10 3
2.5+TSIHEHI o 51n4:frr
2o 8
fsmzm

previous result  + AWM =

Page no: 22



ENGG. MATHEMATICS III SUBJECT CODE- BE-3001

10 21t l:fr.f

i 4

?

previous result +

previous result +  MWAWWRMNAWAW

10 o 11
T Sin gt

previous result + ARV AR WAV

If we graph many terms, we see that our series is producing the required function. We graph the first 20
terms:

254 ﬂzzo 1 <in (2n— 1)nt

n =1 2n—-1) 4
A
I e R T
47
5]
.
¢
3 3 10 15 2

Apart from helping us understand what we are doing, a graph can help us check our calculations...

The following video illustrates what we are doing. The equation is not exactly the same, but the concept is.
The tone heard at the end is (close to) a "pure" square wave.
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Common Case: Period = 2L= 21t

If a function is defined in the range -rt to it (i.e. period 2L = 2m radians), the range of integration is 2 and half
therangeis L =T

The Fourier coefficients of the Fourier series f(t) in this case become:

ay = + [* fnt

q

a, = & |* fitycosntdt b, = 4 [* fit)sinnt dt

and the formula for the Fourier Series becomes:
. & ca ca -
i) = 5+ Y. Gpcosnt+ " b,sinnt

wheren=1, 2, 3, ...

Example

a) Sketch the waveform of the periodic function defined as:
flt)=tfor-n<t<m
f(t) =f(t + 2n) for all t.

b) Obtain the Fourier series of f(t) and write the first 4 terms of the series.
Answer

a) Sketch:

)

b) First, we need to find the Fourier coefficients ao, an, and as.
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http://www.intmath.com/fourier-series/ans-2.php?a=2
http://www.intmath.com/fourier-series/ans-2.php?a=2
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=0

Now, using a result from before:

I tcosnt dt = % (cosnt + nfsinnt)

tdy, =

F1

r f(f) cosnt dt

r t cosnt dt

T
% (cosnt + ntsinni) ]
#? -

p— (cosnm +0) — (cos(—nn) + 0)]

= %(cos 1T — COS AT )

in

=0

Once again, using a result from before:

I fsin nfdf = Lz (sinnf — ntcosnt)

7?
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bu= % | Aosinntdr

H— N

kra
I fsinnt dt
-

= lliL sin#f — ntcosnt jlﬁ
7T ”2( ) .

ﬁ([o —nrcosnn ) — [0+ nrcos(—nn)])

= M ¢ 2cosnn
Hgﬂ( )

_ _2
= — 4 COSMA

= -1 = FED

Now for the Fourier Series:

i) = % + Z(ﬂm cosnt + b, sinnt)

a=1
= g S l _ e+l o
= 3 +Zl((0)cosm+ = (-1 smm‘)
= > (&1 sinnt)
a=1
= 2sinf— smn2f+ %sﬂﬂf— %sinélr-i-...

What have we found?

Let's see an animation of this example using LiveMath.

The graph of the first 40 terms is:

S (&1 sinne)
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L3 o

We can express the Fourier Series in different ways for convenience, depending on the situation.
Fourier Series Expanded In Time t with period T
Let the function f(t) be periodic with period T= 2L where

2n 2n «w

T 2L I

In this case, our lower limit of integration is 0.

Hence the Fourier series is
_ & e e .
flH) = 5 Zm=1 a,, COS Rt + ZH=1 b, sinnomt

where

ay = L[ floar

2l ot .
ay = %I;wﬂ;‘) cosnpwtdt b, = %I;mﬂr}smnmrdz‘

(Note: half the range of integration = /w)
Fourier Series Expanded in Angular Displacement w

(Note: w is measured in radians here)
Let the function f(w) be periodic with period 2L.

We let 8 = wt. This function can be represented as

fle) = % +y (an cos _nirt? + b, sin ”Lﬂ)
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where

_ L 2L
ay = + [ )b

a, * 70) cos 110 mrfﬁ' MY 46 b, J'Eﬁﬂf:?') sin 227 mrt?'

l.
Lo
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