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UNIT – 2 

FOURIER TRANSFORM 
 

Syllabus: Integral Transforms: Fourier Transform-Complex Fourier Transform, Fourier Sine and Cosine        

Transforms, Applications of Fourier Transform in Solving the Ordinary Differential Equation. 

 

Any general periodic signal  has the automatic property )
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  where T is the period of the signal. 

The 2 is ͞sŶuĐk͟ iŶ ďeĐause ǁe kŶoǁ that trigoŶoŵetriĐ fuŶĐtioŶs are good eǆaŵples of repetitioŶ. The 
complexity of )(tf  is irreleǀaŶt as loŶg as it repeats itself faithfullǇ. Please keep iŶ ŵiŶd that ͚t͛ for 
radioastronomy is usually time, but in fact it is an arbitrary variable and so what follows below is applicable 

provided the variable has functional repetition in some way with a repeat T. Thus spatial repetition is 

another important variable to which we may apply the theory. 

Fourier discovered that such a complex signal could be decomposed into an infinite series made up of 

cosine and sine terms and a whole bunch of coefficients which can (surprisingly) be readily determined. 
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If you like, we have decomposed the original function )(tf into a series of basis states.  For those of you 

who like to be creative this immediately begs the question of: is this the only decomposition possible? The 

answer is no. 

The ĐoeffiĐieŶts are ͞readilǇ͟ deterŵiŶed ďǇ iŶtegratioŶ. 
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Introducing complex notation we can simplify all of the above to what you often see in textbooks. 

)
2

exp()(
T

nt
ictf

n

n


 





 


2/

2/
)

2
exp()(

1 T

T
n dt

T

nt
itf

T
c


 

Here 00
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nnn ibac  , and )(
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1
nnn ibac  . 

The graphical example below indicates how addition of cosine time function terms are Fourier 

transformed into coefficients. In this case only 2/nn ac  . Take care the centre line with the big arrow is to 

mark the axis only – it is not part of the coefficient display. Notice also that two coefficient lines appear for 

every frequency. The latter is related to the Nyquist sampling theorem (see below) and is also why the 

coefficient magnitudes are halved. Notice also the spacing of the coefficients to be an integral multiple 

of Tf /10   with the sign consistent with the input waveform.  
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Fig. 2.1;after ͚The Fast Fourier TraŶsforŵ͛, E.O. Brighaŵ, PreŶtice Hall, 1974Ϳ 

 

Exercise: 

Q1. Find the Fourier transform of    

Soln.  F  =                                                                          =  

 

       F  =            

Q2. Find the Fourier sine transform of  f(x) =  

Soln. fs(s) =                                                         
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Thinking in terms of the Fourier Transform 

 
 Digital filtering on a static input time sample can be done taking a FFT of the vector and then applying the 

desired filter shape to the resultant coefficients. Now apply an inverse FFT and the result is a filtered time 
set. Clean up your old records this way by converting the sound to digital sample files and process them on 
a PC. 

 
 Continuous digital filtering on a continuous time sample can be thought of as deliberately convolving the 

incoming signal with a function which is the inverse FT of the filter shape. This is how many digital filters 
called FIR filters work. They do the job on the fly. 

 
 
There are a number of techniques to do FFT’s quickly and so get power spectra. Correlators use the following 
simple idea: 
 
 
 
 
1. The autocorrelation of a signal )(tf  with a time shifted version of itself )( tf  is given by  

  dttftfA )()()(  . 

 
2. If we take the FT of this in   space we get, after a fiddle with variable substitution, 

  )()()2exp()( *
sFsFdsiA  , provided we assume )(tf  is a real function (which of course it will be in 

our case). But this is exactly the desired power spectrum since )()()( *
sFsFsP  . 

 
3. Producing a fast autocorrelator using a shift register and a bit of electronics allows )(A to be produced 

efficiently by continually multiplying a sampled signal with previous samples of itself. The final vector can 
then be converted into a power spectrum with a single FFT. 

 
  

The Fourier “Family(Another way to study Fourier) 
  

Fourier Series 

 
If we have a reasonably well behaved, continuous, periodic function x(t), then we can approximate x(t) as the 
weighted sum of simple sinusoids  
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e.g.  x(t) ≈ ao/2 +   (an cos(2πft) + bn sin (2πft)) 
                              n 
 
if we choose the “weights” an and bn properly. A simple “least squares” procedure yields the well known 
formulae for calculating an and bn, i.e. 
 
   
           T/2  

 an = (2/T)  x(t) cos(2πft) dt 
                           -T/2 
 
 
           T/2  

 bn = (2/T)  x(t) sin (2πft) dt 
                           -T/2 
 
where f = n/T 
 
We can use Euler’s relation to rewrite the sinusoidal version of Fourier series in terms of exponentials, e.g. 
 

 x(t) =  αnei2πft 
                      n 
                T/2 

 where  αn =   (1/T)  x(t) e-i2πft dt 

 
                                          -T/2 

In the limit of the period T approach infinity, we get the a fit to a non-periodic function x(t) that is the 
 
 
Fourier Transform 

 

                   

X(f) =   x(t) e-i2πft dt 

         - 
 
which converts a function of time into a function of frequency  
(or a function of space into a function of wavenumber) 
 
 
x(t)     is  then represented by   X(f) 
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The new function has the same information as x(t) but from a different perspective. If this is done properly, then 
one can always recover the orginal function x(t) by an inverse transform, i.e. 
 
                                                        

x(t) =   X(f) e+i2πft dt 

                                                     - 

 

The discrete (digital) form of the transform (DFT) for a time series of length N is: 
                    
 
                                   N-1 

 X(jΔf) = Xj =    xk e-i2πkj/N 

                                   k=0 
 
and 
               N-1 

 x(kΔt) = xk=  1/N     Xj ei2πkj/N 

      j=0 
 
where Δf  = 1/N Δt 
 
 
 
 
Note the relationship with simply sinuisoids, i.e. 
 

e-i2πkj/N =  cos(2πkj/N) - i sin (2πkj/N) 
 
Also note that these equations allow one to compute either X or x for values of j and i respectively that are 
outside the range of 0 and N-1. These values correspond to the periodic replicas of X and x that are implicit in 
the discreter formulation. 
 
 
Now, let’s make a simple substitution, letting 
 

   z= e-i2πj/N 

 
then the equation for the DFT becomes 
 
    
                           N-1                             N-1 

 X(jΔt) = Xj =     xk e-i2πkj/N   =   xk zk    =   X(z).  

                                      k=0                           k=0 
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This latter relation is called the 
 
 

 

 Z transform. 

 
Note that computing the Z transform for a time series is rather trivial: 
 
e.g.    if x

k
 = 1, 4, 0, -8, 3 

 
then 
 

 X(z) = 1z0 + 4z1 + 0z2 - 8z3 + 3z4 

 

or  X(z) = 1z + 4z1 - 8z3 + 3z4 

 
This real utility of the z transform becomes apparent when implementing convolution via the convolution 
theorem, i.e.  
 
 given x

t
  as the input to filter f

t
, then the output is: 

 
 s

t
 = x

t
 * f

t 
 

 
Using the convolution theorem, this is equivalent to: 

 

 S(z) = X(z) . F(z), where these are the z transforms of the their     
 respective time series. 
 
 ex.  if   x

t 
=  1, 3      and   f

t
 = 4, 2 then 

 

 S(z) = (1+3z).(4+2z) =  4 + 14 z + 6 z2  (i.e. polynomial        
   multiplication) 

  
 or  st = 4, 14, 6 

 
 
Deconvolution with the z transform 

 

Z transforms are also very handing for computing inverse filters (deconvolution) 
 

Again, if s
t
 = x

t
 * f

t            
and

 
 S(z) = X(z) . F(z).  

 
If we wanter to computer xt  from  st and ft, then 
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 X(z) =  S(z)/F(z)     or X(z) =  S(z)  .  F-1(z) 
 

Where F-1(z) =  1/F(z) is the inverse filter for F(z). 
 

We can computer F-1(z) directly by polynomial division: 
 
Example:  if  ft = 2, 1  and F(z) = 2+z, 

 

then    F-1(z)  = 
 

                        .5 -.25z+. 125z2-.0625z3+ ..... etc. 
 2+z |  1 
  1+.5z 
     -.5z 

     -.5z-.25z2 

               .25z2 

 

This form of F-1(z) is called an Infinite Impulse Response Filter or IIR. 
 
Note that since the higher order terms are decreasing in amplitude, this infinite series is convergent. Thus it is 
stable. This is the case  
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