Unit IV

Syllabus: Discrete and Continuous Random Variables, Probability Function, Distribution Function, Density Function, Probability distribution, Mean \& Variance of Random Variable.

Random Variable:

A real valued function defined on a sample space is called a Random Variable or a Discrete Random Variable.

A Random Variable assumes only a set of real values \& the values which variable takes depends on the chance.

For Example:
a) X takes only a set of discrete values $1,2,3,4,5,6$.
b) The values which x takes depends on the chance.

The set values $1,2,3,4,5,6$ with their probabilities $1 / 6$ is called the Probability Distribution of the variate x .

Continuous Random Variable:

When we deal with variates like weights and temperature then we know that these variates can take an infinite number of values in a given interval. Such type of variates are known as

Continuous Random Variable.

OR
A Variable which is not discrete i.e. which can take infinite number of values in a given interval $a \leq x \leq b$, is called Continuous Random Variable

Example: $\operatorname{Sin} x$ between $(0, \pi), x$ is a Continuous Random Variable.

Probability Mass Function:

Suppose that $X: S \rightarrow A$ is a discrete random variable defined on a sample space S. Then the probability mass function $p(x): A \rightarrow[0,1]$ for X is defined as:
a) $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}\right) \geq 0$,for every $\mathrm{i}=1,2,3$..
b) $\sum_{\mathrm{i}=1}^{\infty} \mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=1$

The sum of probabilities over all possible values of a discrete random variables must be equal to 1 .

Thinking of probability as mass helps to avoid mistakes since the physical mass is conserved as is the total probability for all hypothetical outcomes x.

- The following exponentially declining distribution is an example of a distribution with an infinite number of possible outcomes-all the positive integers:

$$
\mathrm{p}\left(\mathrm{x}_{\mathrm{i}}\right)=\frac{1}{2^{\mathrm{i}}}, \mathrm{i}=1,2,3, \ldots
$$

Despite the infinite number of possible outcomes, the total probability mass is $1 / 2+1 / 4$ $+1 / 8+\ldots=1$, satisfying the unit total probability requirement for a probability distribution.

Probability Density Function:

Let X be a continuous random variable and let the probability of X falling in the infinite interval $\left(x-\frac{1}{2} d x, x+\frac{1}{2} d x\right)$ be expressed by $\mathrm{f}(\mathrm{x}) \mathrm{d} \mathrm{x}$, i.e.

$$
\mathrm{P}\left(x-\frac{1}{2} d x, x+\frac{1}{2} d x\right)=\mathrm{f}(\mathrm{x}) \mathrm{dx}
$$

Where $\mathrm{f}(\mathrm{x})$ is a continuous function of X \& satisfies the following condition:
a) $f(x) \geq 0$
b) $\int_{a}^{b} f(x) d x=1$ if $a \leq x \leq b$

Then the function is called probability density function of the continuous random variable X.

Continuous Probability Distribution:

The Probability distribution of continuous random variate is called the continuous probability distribution and it is expressed in terms of probability density function.

Cumulative Distribution Function:

The probability that the value of a random variate X is ' x or less than x ' is called the Cumulative distribution function of X and is usually denoted by $F(x)$. and it is given by
$\mathrm{F}(\mathrm{x})=\mathrm{P}(\mathrm{X} \leq \mathrm{x})=\sum_{x \leq x_{i}} p\left(x_{i}\right)$
The cumulative distribution function of a continuous random variable is given by

$$
F(x)=P(X \leq x)=\int_{-\infty}^{x} f(x) d x
$$

Some properties of Cumulative Distribution Function:
a) $F(-\infty)=0$
b) $F(X)$ is non-decreasing function
c) For a distribution variate

Engineering Mathematics III
BE 3001

$$
P(a<x<b)=F(b)-F(a)
$$

d) $F(+\infty)=1$
e) $F(x)$ is a discontinuous function for a discontinuous variate and $F(x)$ is continuous function foe a continuous variate.

Examples:

1) Let X be a random variable with PDF given by

$$
f(x)= \begin{cases}c x^{2} & |x| \leq 1 \\ 0 & \text { otherwise }\end{cases}
$$

a. Find the constant c
. b. Find $E X$ and $\operatorname{Var}(X)$
c. Find $P(X \geq 12)$.

Solution: To find c, we can use $\int_{-\infty}^{\infty} f(x) d x=1$:

$$
\begin{gathered}
1=\int_{-1}^{1} c x^{2} d x \\
1=\frac{2}{3} c
\end{gathered}
$$

Therfore $\mathrm{C}=\frac{3}{2}$
To find $E X$, we can write $\int_{-1}^{1} x f(x) d x=0$
In fact, we could have guessed $E X=0$ because the PDF is symmetric around $x=0$. To find $\operatorname{Var}(X)$, we have

$$
\begin{aligned}
& \quad \operatorname{Var}(X) \\
& =E X 2-(E X) 2=E X 2 \\
& =\int_{-1}^{1} x f(x) d x \\
& =3 / 5
\end{aligned}
$$

To Find $P(X \geq 12)$:

$\mathrm{P}(\mathrm{X} \geq 12)=\frac{3}{2} \int_{\frac{1}{2}}^{1} x^{2} d x$
=7/16.

Engineering Mathematics III
BE 3001
(2)The probability distribution function for a discrete random variable X is

$$
\begin{array}{r}
f(x)=2 k, \quad x=1 \\
3 k, \quad x=3 \\
4 k, \quad x=5
\end{array}
$$

O, otherwise

where k is some constant. Please find
(a) k. (b) $P(X>2)$ (c) $E(X)$ and $\operatorname{Var}(X)$
[solution:]
(a)

$$
\sum_{x} f(x)=f(1)+f(3)+f(5)=2 k+3 k+4 k=9 k=1
$$

$\Leftrightarrow \quad k=\frac{1}{9}$.
(b)

$$
\begin{aligned}
P(X>2) & =P(X=3 \text { or } X=5)=P(X=3)+P(X=5) \\
& =f(3)+f(5)=3 k+4 k=7 k=7 \cdot \frac{1}{9}=\frac{7}{9} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
u & =E(X)=\sum_{x} x f(x)=1 \cdot f(1)+3 \cdot f(3)+5 \cdot f(5) \\
& =1 \cdot \frac{2}{9}+3 \cdot \frac{3}{9}+5 \cdot \frac{4}{9}=\frac{31}{9}
\end{aligned}
$$

Engineering Mathematics III BE 3001
and

$$
\begin{aligned}
\operatorname{Var}(X) & =\sum_{x}(x-u)^{2} f(x) \\
& =\left(1-\frac{31}{9}\right)^{2} \cdot f(1)+\left(3-\frac{31}{9}\right)^{2} \cdot f(3)+\left(5-\frac{31}{9}\right)^{2} \cdot f(5) \\
& =\frac{(-22)^{2}}{81} \cdot \frac{2}{9}+\frac{16}{81} \cdot \frac{3}{9}+\frac{14^{2}}{81} \cdot \frac{4}{9}=\frac{200}{81}
\end{aligned}
$$

(3)The probability density function for a continuous random variable X is

$$
\begin{gathered}
f(x)=a+b x^{2}, \quad 0 \leq x \leq 1 \\
O, \text { otherwise } .
\end{gathered}
$$

where a, b are some constants. Please find
(a) a, b if $E(X)=\frac{3}{5}$ (b) $\operatorname{Var}(X)$.
[solution:]
(a)

$$
\begin{aligned}
\int_{0}^{1} f(x) d x=1 & \Leftrightarrow \int_{0}^{1}\left(a+b x^{2}\right) d x=1 \Leftrightarrow a x+\left.\frac{b}{3} x^{3}\right|_{0} ^{1}=1 \\
& \Leftrightarrow a+\frac{b}{3}=1
\end{aligned}
$$

and

$$
E(X)=\int_{0}^{1} x f(x) d x=\int_{0}^{1} x\left(a+b x^{2}\right) d x=\frac{a}{2} x^{2}+\left.\frac{b}{4} x^{4}\right|_{0} ^{1}=\frac{a}{2}+\frac{b}{4}=\frac{3}{5}
$$

Solve for the two equations, we have

$$
a=\frac{3}{5}, b=\frac{6}{5}
$$

(b)

$$
\begin{gathered}
f(x)=\frac{3}{5}+\frac{6}{5} x^{2}, \quad 0 \leq x \leq 1 \\
0, \text { otherwise }
\end{gathered}
$$

Thus,

$$
\begin{aligned}
\operatorname{Var}(X) & =E[X-E(X)]^{2}=E\left(X^{2}\right)-[E(X)]^{2}=E\left(X^{2}\right)-\left(\frac{3}{5}\right)^{2} \\
& =\int_{0}^{1} x^{2} f(x) d x-\frac{9}{25}=\int_{0}^{1} x^{2}\left(\frac{3}{5}+\frac{6}{5} x^{2}\right) d x-\frac{9}{25} \\
& =\frac{1}{5} x^{3}+\left.\frac{6}{25} x^{5}\right|_{0} ^{1}-\frac{9}{25}=\frac{1}{5}+\frac{6}{25}-\frac{9}{25}=\frac{2}{25}
\end{aligned}
$$

$4 x$: the random variable representing the point of throwing a fair dice. Then,

$$
P(X=i)=f_{x}(i)=\frac{1}{6}, i=1,2,3,4,5,6 .
$$

Intuitively, the average point of throwing a fair dice is

$$
\frac{1+2+3+4+5+6}{6}=3.5
$$

The expected value of the random variable \boldsymbol{X} is just the average,

$$
E(X)=\sum_{i=1}^{6} i_{x}(i)=1 \cdot \frac{1}{6}+2 \cdot \frac{1}{6}+3 \cdot \frac{1}{6}+4 \cdot \frac{1}{6}+5 \cdot \frac{1}{6}+6 \cdot \frac{1}{6}=3.5=\text { average point } .
$$

(5)The probability density function for a continuous random variable X is

$$
f(x)=\left\{\begin{array}{c}
\frac{x+2}{18},-2<x<4 \\
0, \text { otherwise }
\end{array}\right.
$$

Please find (a) $P(|X|<1)$ (b) $P\left(X^{2}<9\right)$ (c) $E(X)$ and $\operatorname{Var}(X)$

[solution:]

(a)

$$
P(|X|<1)=P(-1<X<1)=\int_{-1}^{1} \frac{x+2}{18} d x=\left[\frac{x^{2}}{36}+\frac{x}{9}\right]_{-1}^{1}=\left(\frac{1}{36}+\frac{1}{9}\right)-\left(\frac{1}{36}-\frac{1}{9}\right)=\frac{2}{9}
$$

(b) $\quad P\left(X^{2}<9\right)=P(-3<X<3)=\int_{-3}^{3} \frac{x+2}{18} d x=\int_{-3}^{-2} 0 d x+\int_{-2}^{3} \frac{x+2}{18} d x=\left[\frac{x^{2}}{36}+\frac{x}{9}\right]_{-2}^{3}=\frac{25}{36}$
(c)

$$
E(X)=\mu=\int_{-2}^{4} x \cdot \frac{(x+2)}{18} d x=\int_{-2}^{4}\left(\frac{x^{2}}{18}+\frac{x}{9}\right) d x=\left[\frac{x^{3}}{54}+\frac{x^{2}}{18}\right]_{-2}^{4}=2 .
$$

Since

$$
\begin{gathered}
E\left(X^{2}\right)=\int_{-2}^{4} x^{2} \cdot \frac{(x+2)}{18} d x=\int_{-2}^{4}\left(\frac{x^{3}}{18}+\frac{x^{2}}{9}\right) d x=\left[\frac{x^{4}}{72}+\frac{x^{3}}{27}\right]_{-2}^{4}=6, \\
\operatorname{Var}(X)=E(X-\mu)^{2}=E\left(X^{2}\right)-\mu^{2}=6-2^{2}=2 .
\end{gathered}
$$

(6) The probability distribution functions (discrete random variable) or probability density functions (continuous random variable) for a random variable X are
(a)

Engineering Mathematics III
BE 3001

$$
f(x)=\left\{\begin{array}{c}
c \exp (-6 x), x>0 \\
-c x,-1<x \leq 0 \\
0, \text { otherwise }
\end{array}\right.
$$

(b)

$$
f(x)=c x^{2} \exp \left(-x^{3}\right), x>0
$$

(c)

$$
f(x)=c\left(\frac{1}{3}\right)^{x}, x=0,1,2, \ldots
$$

Find C.
[solution:]
(a)

$$
\begin{aligned}
& \int_{-1}^{0}-c x d x+\int_{0}^{\infty} c \exp (-6 x) d x=1 \Leftrightarrow\left[\frac{-c x^{2}}{2}\right]_{-1}^{0}+\left[\frac{-c \exp (-6 x)}{6}\right]_{0}^{\infty}=1 \\
\Leftrightarrow & \frac{c}{2}+\frac{c}{6}=1 \Leftrightarrow \frac{3 c+c}{6}=1 \Leftrightarrow c=\frac{3}{2}
\end{aligned}
$$

(b)

$$
\begin{aligned}
& \int_{0}^{\infty} c x^{2} \exp \left(-x^{3}\right) d x=1 \Leftrightarrow c \int_{0}^{\infty} \frac{1}{3} \exp \left(-x^{3}\right) d x^{3}=1 \Leftrightarrow\left[\frac{-c \exp \left(-x^{3}\right)}{3}\right]_{0}^{\infty}=1 \\
\Leftrightarrow & \frac{c}{3}=1 \Leftrightarrow c=3
\end{aligned}
$$

(c)

$$
\begin{aligned}
& \sum_{x=0}^{\infty} c\left(\frac{1}{3}\right)^{x}=1 \Leftrightarrow c\left[1+\frac{1}{3}+\left(\frac{1}{3}\right)^{2}+\cdots\right]=1 \Leftrightarrow c\left(\frac{1}{1-1 / 3}\right)=1 \Leftrightarrow \frac{3 c}{2}=1 \\
\Leftrightarrow & c=\frac{2}{3}
\end{aligned}
$$

Example: If $\mathrm{f}(\mathrm{x})=\mathrm{cx}, 0<\mathrm{x}<1$. Find the value of c and determine the probability that $\frac{1}{3}<x<\frac{1}{2}$
Solution: By property of p.d.f. we have, $\int_{0}^{1} f(x) d x=1$
So $\int_{0}^{1} c x^{2} d x=1$, or $c\left[\frac{x^{3}}{3}\right]_{0}^{1}=1$, so $\mathrm{c}=3$
Consequently $\mathrm{f}(\mathrm{x})=3 x^{2}: 0<x<1$
Again $\mathrm{P}\left(\frac{1}{3}<X<\frac{1}{2}\right)=\int_{\frac{1}{3}}^{\frac{1}{2}} 3 x^{2} \quad d x=\frac{1}{8}-\frac{1}{27}=\frac{19}{216}$
Example: For the distribution $d F=\sin x d x, 0 \leq x \leq \pi / 2$. Find Mode and Median.
Solution: Here $\mathrm{f}(\mathrm{x})=\sin \mathrm{x}, 0 \leq x \leq \frac{\pi}{2}$
(a) For Mode: $f^{\prime}(x)=0 \& f^{\prime \prime}(x)<0, f^{\prime}(x)=0 \Rightarrow \cos x=0 \Rightarrow x=\frac{\pi}{2} \&$
$\left[f^{\prime \prime}(x)\right]_{x=\frac{\pi}{2}}=-1<0$, Hence mode $=\frac{\pi}{2}$
Let M_{d} be median, then $\int_{0}^{M_{d}} \sin x d x=\frac{1}{2} \Rightarrow M_{d}=\pi / 3$
(b) Mean $=\mu_{1}{ }^{\prime}=\int_{0}^{\frac{\pi}{2}}(x-0) f(x) d x=\int_{0}^{\frac{\pi}{2}} x \sin x d x=1$ \&

Variance $=\mu_{2}=\int_{0}^{\frac{\pi}{2}}(x-1)^{2} \sin x d x=\pi-3$

Continuous random variable - infinite number of values with no gaps between the values. [You might consider drawing a line, the sweeping hand on a clock, or the analog speedometer on a car.]

In this section, we restrict our discussion to discrete probability distributions. Each probability distribution must satisfy the following two conditions.

1. $\sum P(x)=1$ where x assumes all possible values of the random variable

Engineering Mathematics III
BE 3001
2. $0 \leq P(x) \leq 1$ for every value of x

As we found the mean and standard deviation with data in descriptive statistics, we can find the mean and standard deviation for probability distributions by using the following formulas.

1. $\mu=\sum[x \cdot P(x)] \quad$ mean of probability distribution
2. $\sigma^{2}=\sum\left[(x-\mu)^{2} \cdot P(x)\right] \quad$ variance of probability distribution
3. $\sigma^{2}=\sum\left[x^{2} \cdot P(x)\right]-\mu^{2} \quad$ variance of probability distribution
4. $\sigma=\sqrt{\left[\sum\left[x^{2} \cdot P(x)\right]-\mu^{2}\right]}$ standard deviation of probability distribution
