
1

UNIT – 1

Overview of Object Oriented concepts

Unit-01/Lecture-01

Introduction [RGPV/DEC-2008(10)]

Object-oriented programming is a method of implementation in which programs are

organized as cooperative collections of objects, each of which represents an instance of

some class, and whose classes are all members of a hierarchy of classes united via

inheritance relationships.

An object contains both data and methods that control the data. The data represents the

state of the object. A class describes an object and they also form hierarchy to model real

world system. The hierarchy is represented as inheritance and the classes can also be

associated in different manners as per the requirement.

The objects are the real world entities that exist around us and the basic concepts like

abstraction, encapsulation, inheritance, polymorphism all can be represented using UML.

So UML is powerful enough to represent all the concepts exists in object oriented analysis

and design. UML diagrams are representation of object oriented concepts only. So before

learning UML, it becomes important to understand OO concepts in details.

Following are some fundamental concepts of object oriented world:

Objects: Objects represent an entity and the basic building block.

Class: Class is the blue print of an object.

Abstraction: Abstraction represents the behavior of a real world entity.

Encapsulation: Encapsulation is the mechanism of binding the data together and hiding

them from outside world.

Inheritance: Inheritance is the mechanism of making new classes from existing one.

Polymorphism: It defines the mechanism to exist in different forms.

Object-oriented analysis and design (OOAD) is a software engineering approach that models

a system as a group of interacting objects. Each object represents some entity of interest in

the system being modeled, and is characterised by its class, its state (data elements), and its

behavior. Various models can be created to show the static structure, dynamic behavior,

and run-time deployment of these collaborating objects. There are a number of different

notations for representing these models, such as the Unified Modeling Language (UML).

Object-oriented analysis (OOA) applies object-modelling techniques to analyze the

functional requirements for a system. Object-oriented design (OOD) elaborates the analysis

models to produce implementation specifications. OOA focuses on what the system does,

OOD on how the system does it.

 we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

Object-oriented systems

An object-oriented system is composed of objects. The behavior of the system results from

the collaboration of those objects. Collaboration between objects involves them sending

messages to each other. Sending a message differs from calling a function in that when a

target object receives a message, it itself decides what function to carry out to service that

message. The same message may be implemented by many different functions, the one

selected depending on the state of the target object.

The implementation of "message sending" varies depending on the architecture of the

system being modeled, and the location of the objects being communicated with.

Object-oriented analysis

Object-oriented analysis (OOA) looks at the problem domain, with the aim of producing a

conceptual model of the information that exists in the area being analyzed. Analysis models

do not consider any implementation constraints that might exist, such as concurrency,

distribution, persistence, or how the system is to be built. Implementation constraints are

dealt during object-oriented design (OOD). Analysis is done before the Design.

The sources for the analysis can be a written requirements statement, a formal vision

document, interviews with stakeholders or other interested parties. A system may be

divided into multiple domains, representing different business, technological, or other areas

of interest, each of which are analyzed separately.

The result of object-oriented analysis is a description of what the system is functionally

required to do, in the form of a conceptual model. That will typically be presented as a set

of use cases, one or more UML class diagrams, and a number of interaction diagrams. It

may also include some kind of user interface mock-up. The purpose of object oriented

analysis is to develop a model that describes computer software as it works to satisfy a set

of customer defined requirements.

Object-oriented design

Object-oriented design (OOD) transforms the conceptual model produced in object-

oriented analysis to take account of the constraints imposed by the chosen architecture and

any non-functional – technological or environmental – constraints, such as transaction

throughput, response time, run-time platform, development environment, or programming

language.

The concepts in the analysis model are mapped onto implementation classes and interfaces.

The result is a model of the solution domain, a detailed description of how the system is to

be built.

What is UML?

Unified Modelling Language (UML) is the set of notations,models and diagrams used when

developing object-oriented (OO) systems.

UML is the industry standard OO visual modelling language. The latest version is UML 1.4

and was formed from the coming together of three leading software methodologists;

Booch, Jacobson and Rumbaugh.

UML allows the analyst ways of describing structure, behaviour of significant parts of system and

their relationships.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

Unified Modeling Language (UML) is a standardized general-purpose modeling language in the

field of software engineering. The standard is managed, and was created by, the Object

Management Group. UML includes a set of graphic notation techniques to create visual

models of software-intensive systems.

The Unified Modeling Language is commonly used to visualize and construct systems which

are software intensive. Because software has become much more complex in recent years,

developers are finding it more challenging to build complex applications within short time

periods. Even when they do, these software applications are often filled with bugs, and it

can take programmers weeks to find and fix them. This is time that has been wasted, since

an approach could have been used which would have reduced the number of bugs before

the application was completed.

However, it should be emphasized that UML is not limited simply modeling software. It can

also be used to build models for system engineering, business processes, and organization

structures. A special language called Systems Modeling Language was designed to handle

systems which were defined within UML 2.0. The Unified Modeling Language is important

for a number of reasons. First, it has been used as a catalyst for the advancement of

technologies which are model driven, and some of these include Model Driven

Development and Model Driven Architecture.

Because an emphasis has been placed on the importance of graphics notation, UML is

proficient in meeting this demand, and it can be used to represent behaviors, classes, and

aggregation. While software developers were forced to deal with more rudimentary issues

in the past, languages like UML have now allowed them to focus on the structure and

design of their software programs. It should also be noted that UML models can be

transformed into various other representations, often without a great deal of effort. One

example of this is the ability to transform UML models into Java representations.

This transformation can be accomplished through a transformation language that is similar

to QVT. Many of these languages may be supported by OMG. The Unified Modeling

Language has a number of features and characteristics which separate it from other

languages within the same category. Many of these attributes have allowed it to be useful

for developers. In this article, I intend to show you many of these attributes, and you will

then understand why the Unified Modeling Language is one of the most powerful

languages in existence today.

Objects and classes: [RGPV/DEC-2010(10)]

Objects are composite data types. An object provides for the storage of multiple data

values in a single unit. Each value is assigned a name which may then be used to reference

it. Each element in an object is referred to as a property. Object properties can be

seen as an unordered list of name value pairs contained within the container object.

Object comes in two flavors. There are system defined objects, which are predefined

and come with the JavaScript parser or with the browser running the parser. And there

are user defined objects, which the programmer creates.

Class a definition, or description, of how the object is supposed to be created, what it

contains, and how it work

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

There are two important concepts to understand when talking about objects. These

are the ideas of class and instance.

Creating objects is a two step process. First you must define a class of objects, then you use

the object class by declaring instances of that class within the program. The object class is

a definition, or description, of how the object is supposed to be created, what it contains,

and how it works. The object instance is a composite data type, or object, created based

on the rules set forth in the class definition.

instance: a composite data type, or object, created based on the rules set forth in the class

definition

This break between class and instance is not new, it is just that before objects, all data

classes were hard coded into the parser and you could just make use of them while

creating variables that were instances of those classes. Someone, somewhere, had to write

the code to define the integer data type as being a numeric value with no fractional

component. Whenever you declare an integer variable, you make use of this definition to

create, or instantiate, an integer. Fortunately for us, it all happens behind the scenes.

The point of object-based programming languages is that they give the user the ability to

define their own data types that can be specifically tailored to the needs of the application.

There are still system-defined data types and object classes, so you don't need to worry

about defining commonly used types of variables, but you now can go beyond them.

Since objects are composite data types, they can contain more than one piece of data. In

fact, the very point of the object is to bring together related data elements into a logical

grouping. This grouping can contain not only data values, but also rules for processing

those values. In an object, a data element is called a property, while the rules the object

contains for processing those values are called methods. This makes objects very powerful

because they can not only store data, but they can store the instructions on what to do

with that data.

 public class Student {

 }

According to the sample given below we can say that the student object, named

objectStudent, has created out of the Student class.

 Student objectStudent = new Student();

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

Classes

Terms and Concepts

A class is a description of a set of objects that share the same attributes, operations,

relationships, and semantics. Graphically, a class is rendered as a rectangle.

Names

A class name must be unique within its enclosing package,

Every class must have a name that distinguishes it from other classes. A name is a

textual string. That name alone is known as a simple name; a path name is the class

name prefixed by the name of the package in which that class lives. A class may be

drawn showing only its name,

Simple and Path Names

Note

A class name may be text consisting of any number of letters, numbers, and certain

punctuation marks (except for marks such as the colon, which is used to separate a

class name and the name of its enclosing package) and may continue over several lines.

In practice, class names are short nouns or noun phrases drawn from the vocabulary of

the system you are modeling. Typically, you capitalize the first letter of every word in a
we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

class name, as in Customer or TemperatureSensor.

Attributes

Attributes are related to the semantics of aggregation.

An attribute is a named property of a class that describes a range of values that

instances of the property may hold. A class may have any number of attributes or no

attributes at all. An attribute represents some property of the thing you are modeling

that is shared by all objects of that class. For example, every wall has a height, width,

and thickness; you might model your customers in such a way that each has a name,

address, phone number, and date of birth. An attribute is therefore an abstraction of

the kind of data or state an object of the class might encompass. At a given moment,

an object of a class will have specific values for every one of its class's attributes.

Graphically, attributes are listed in a compartment just below the class name. Attributes

may be drawn showing only their names.

Attributes

Note

An attribute name may be text, just like a class name. In practice, an attribute name is a

short noun or noun phrase that represents some property of its enclosing class.

Typically, you capitalize the first letter of every word in an attribute name except the

first letter, as in name or loadBearing.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

 Attributes and Their Classes

S.NO RGPV QUESTIONS Year Marks

1. DESCRIBE THE MECHANISM OF ACCESING DATA

MEMBERS and member functions in the

following cases: a) inside the main program.

b)inside the member function of the same class.

c)inside a member function of another class.

Dec 2013 7

2. What are different forms of inheritance? Give

examples of each.

Dec 2013 7

3. In what order are the class constructors called

when a derived class objects are created.

Dec 2013 7

4 How is polymorphism achieved at compile time

and run time.

Dec 2013 7

5 What is object oriented analysis and design? Dec, 2008 10

6 What is object orientation in software

development?

Dec, 2010 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

Unit-01/Lecture-02

Operations [RGPV/JUNE-2006(10)]

An operation is the implementation of a service that can be requested from any

object of the class to affect behavior. In other words, an operation is an abstraction

of something you can do to an object and that is shared by all objects of that class.

A class may have any number of operations or no operations at all. For example, in

a windowing library such as the one found in Java's awt package, all objects of the

class Rectangle can be moved, resized, or queried for their properties. Often (but

not always), invoking an operation on an object changes the object's data or state.

Graphically, operations are listed in a compartment just below the class attributes.

Operations may be drawn showing only their names.

 Operations

Note

An operation name may be text, just like a class name. In practice, an operation

name is a short verb or verb phrase that represents some behavior of its enclosing

class. Typically, you capitalize the first letter of every word in an operation name

except the first letter, as in move or isEmpty.

 Operations and Their Signatures

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

Organizing Attributes and Operations

When drawing a class, you don't have to show every attribute and every operation

at once. In fact, in most cases, you can't (there are too many of them to put in one

figure) and you probably shouldn't (only a subset of these attributes and operations

are likely to be relevant to a specific view). For these reasons, you can elide a class,

meaning that you can choose to show only some or none of a class's attributes and

operations. An empty compartment doesn't necessarily mean there are no

attributes or operations, just that you didn't choose to show them. You can explicitly

specify that there are more attributes or properties than shown by ending each list

with an ellipsis ("...").

Stereotypes for Class Features

Responsibilities

A responsibility is a contract or an obligation of a class. When you create a class, you

are making a statement that all objects of that class have the same kind of state and

the same kind of behavior. At a more abstract level, these corresponding attributes

and operations are just the features by which the class's responsibilities are carried

out. A Wall class is responsible for knowing about height, width, and thickness; a

FraudAgent class, as you might find in a credit card application, is responsible for

processing orders and determining if they are legitimate, suspect, or fraudulent; a

TemperatureSensor class is responsible for measuring temperature and raising an

alarm if the temperature reaches a certain point.

When you model classes, a good starting point is to specify the responsibilities of

the things in your vocabulary. Techniques like CRC cards and use case-based analysis

are especially helpful here. A class may have any number of responsibilities,

although, in practice, every well-structured class has at least one responsibility and

at most just a handful. As you refine your models, you will translate these

responsibilities into a set of attributes and operations that best fulfill the class's

responsibilities.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

 Responsibilities

Note

Responsibilities are just free-form text. In practice, a single responsibility is written as

a phrase, a sentence, or (at most) a short paragraph.

S.NO RGPV QUESTIONS Year Marks

1. Describe the method for identifying classes

and objects

June, 2006 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

Unit-01/Lecture-03

Abstraction [RGPV /DEC-2010(5)]

One job of an OO developer is to take a problem domain, and from it deduce which classes will be needed,
and what instance/variables go in each class.

• Generally easy to identify the lowest-level classes, but we often want to make use of inheritance!

Abstraction is the technique of deciding…

 – What classes do we need?

 – How do we organize our class hierarchy?

 – Which variables/methods do we put in the superclasses, and which do we put in the subclasses?

 Basic approach to abstraction

 Take a collection of proposed classes

 Identify common attributes (instance variables) and behaviors (methods).

 Remove the common attributes and behaviors, and put them in a new class

 New class is a base class which contains the common elements;

 derived classes contain what's left.

Generalization

generalization is a relationship between a general thing (called the superclass or parent)and

a more specific kind of that thing (called the subclass or child). Generalization is sometimes

called an "is-a-kind-of" relationship: one thing (like the class BayWindow) is-a-kind-of a more

general thing (for example, the class Window). Generalization means that objects of the child

may be used anywhere the parent may appear, but not the reverse. In other words,

generalization means that the child is substitutable for the parent. A child inherits the

properties of its parents, especially their attributes and operations. Often• but not always•

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

the child has attributes and operations in addition to those found in its parents. An operation

of a child that has the same signature as an operation in a parent overrides the operation of

the parent; this is known as polymorphism. Graphically, generalization is rendered as a solid

directed line with a large open arrowhead, pointing to the parent. Use generalizations when

you want to show parent/child relationships.

Generalization

A class may have zero, one, or more parents. A class that has no parents and one or more

children is called a root class or a base class. A class that has no children is called a leaf class.

A class that has exactly one parent is said to use single inheritance; a class with more than

one parent is said to use multiple inheritance.

Most often, you will use generalizations among classes and interfaces to show inheritance

relationships. In the UML, you can also create generalizations among other things• most

notably, packages.

Note

A generalization can have a name, although names are rarely needed unless you have a model

with many generalizations and you need to refer to or discriminate among generalizations.

S.NO RGPV QUESTIONS Year Marks

1 What is data abstraction? How can we implement it in

object oriented languages

Dec,2010 5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

Unit-01/Lecture-04

Inheritance [RGPV /DEC-2008(5)]

Inheritance is the property of object-oriented systems that allows objects to be

built from other objects. Inheritance allows explicitly taking advantage of the

commonality of objects when constructing new classes. Inheritance is a relationship

between classes where one class is the parent class of another (derived) class. The parent

class also is known as the base class or super class. Inheritance provides programming by

extension as opposed to programming by reinvention The real advantage of using this

technique is that we can build on what we already have and, more important, reuse what

we already have. Inheritance allows classes to share and reuse behaviors and attributes.

Where the behavior of a class instance is defined in that class's methods, a class also

inherits the behaviors and attributes of all of its super classes.

For example, the Car class defines the general behavior of cars. The Ford class

inherits the general behavior from the Car class and adds behavior specific to Fords. It is not

necessary to redefine the behavior of the car class; this is inherited. Another level down,

the Mustang class inherits the behavior of cars from the Car class and the even more

specific behavior of Fords from the Ford class. The Mustang class then adds behavior

unique to Mustangs. Assume that all Fords use the same braking system. In that case, the

stop method would be defined in class Ford (and not in Mustang class), since it is a behavior

shared by all objects of class Ford. When you step on the brake pedal of a Mustang, you

send a stop message to the Mustang object. However, the stop method is not defined in

the Mustang class, so the hierarchy is searched until a stop method is found. The stop

method is found in the Ford class, a super class of the Mustang class, and it is invoked. In a

similar way, the Mustang class can inherit behaviors from the Car and the Vehicle classes.

 INHERITANCE ALLOWS REUSABLITY

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Inheritance for Specialization

One common reason to use inheritance is to create specializations of existing classes. In

specialization, the derived class has data or behavior aspects that are not part of the base

class. For example, Square is a Rectangle. Square class is specialization of Rectangle class.

Similarly, Circle is an Ellipse. Here also, Circle class is specialization of Ellipse class.

Another example, a BankAccount class might have data members such as

accountNumber, customerName and balance. An InterestBearingAccount class might

inherit

BankAccount and then add data member interestRate and interestAccrued along with

behavior for calculating interest earned.

Another form of specialization occurs when a base class specifies that it has a particular

behavior but does not actually implement the behavior. Each non- abstract, concrete class

which inherits from that abstract class must provide an implementation of that behavior.

This providing of actual behavior by a subclass is sometimes known as implementation or

reification.

For example, there is a class Shape having operation area(). The operation area() cannot be

implemented unless we have concrete class. So, Shape class is abstract class. Rectangle is

a Shape. Now, Rectangle is a concrete class, which can implement the operation area().

Inheritance for Generalization

Vehicle

 Truck

Generalization is reverse of specialization. For instance, a "fruit" is a generalization

of "apple", "orange", "mango" and many others. One can consider fruit to be an

abstraction of apple, orange, etc. Conversely, since apples are fruit (i.e., an apple is-a fruit),

apples may naturally inherit all the properties common to all fruit, such as being a fleshy

container for the seed of a plant. Another example: Vehicle is a generalization of Car, Truck, Bus

etc. as shown in Figure 2.18. Car, Truck, Bus etc. share some properties such as u ber of

wheels , speed, capacity etc. these common properties are abstracted out and put into

another class say Vehicle, which comes higher in the hierarchy.

2.2.6.3 Inheritance for Extension

In this case, inheritance extends the existing class functionalities by adding new operations

in the derived class. It can be distinguished from generalization that the later must

override at least one method from the base and the functionality is tied to that of the base

BUS
CAR

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

class. Extension simply adds new methods to those of the base class and functionality is less

strongly tied to the existing methods of the base class.

 For example, StringSet class inherits from Set class, which specializes for holding

strinvalues. Such a class might provide additional methods for string related operations – for

instance - search by prefix, which returns a subset of all the elements of the set that

begin with a certain string value. These operations are meaningful to the derived class but

are not particularly relevant to the base class.

S.NO RGPV QUESTIONS Year Marks

1. What does inheritance means in object oriented

programming?

Dec,2008 5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

Unit-01/Lecture-05

Inheritance for Restriction [RGPV /DEC-2009(10)]
In this case, the derived class does not implement the functionality, which a base class has.
In other words, inheritance for restriction occurs when the behaviour of the derived class
is smaller or more restrictive than the behaviour of the base class.

For example, an existing class library provides a double-ended queue (deque).

Elements can be added or removed from either end of the deque, but the programmer

wishes to write a stack class, enforcing the property that elements can be added or removed

from only one end of the stack. Here, the programmer can make the Stack class a derived

class of the existing Deque class and can modify or override the undesired methods so that

they produce an error message if used.

2.2.6.5 Inheritance for Overriding

When a class replaces the implementation of a method that it has inherited is called

overriding. Overriding introduces a complication: which version of the method does an

instance of the inherited class use the one that is part of its own class, or the one from

the parent (base) class. The answer varies between programming languages, and some

languages provide the ability to indicate that a particular behaviour is not to be overridden.

2.2.6.6. Constraints of inheritance-based design

 When using inheritance extensively in designing a program, one should be aware of

c e r t a i n constraints that it imposes. For example, consider a class Person that contains a

person's name, address, phone number, age, gender, and race. We can define a subclass of

Person called Student that contains the person's grade point average and classes taken, and

another subclass of Person called Employee that contains the person's job title, employer,

and salary.

 In defining this inheritance hierarchy we have already defined certain restrictions, not all of

which are desirable:

• Singleness: Using single inheritance, a subclass can inherit from only one super class.

Continuing the example given above, Person can be either a Student or an Employee,

but not both. Using multiple inheritance partially solves this problem, as a Student

Employee class can be defined that inherits from both Student and Employee.

However, it can still inherit from each super class only once; this scheme does not support

cases in which a student has two jobs or attends two institutions.

• Static: the inheritance hierarchy of an object is fixed at instantiation when the object's

type is selected and does not change with time. For example, the inheritance graph

does not allow a Student object to become a Employee object while retaining

the state of its Person super class.

(Although similar behaviour can be achieved with the decorator pattern.)

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

Some have criticized inheritance, contending that it locks developers into

their original design standards.

• Visibility: whenever client code has access to an object, it generally has access to all

the object's superclass data. Even if the superclass has not been declared public, the

client can still cast the object to its superclass type. For example, there is no way to

give a function a pointer to a Student's grade point average and transcript

without also giving that function access to all of the personal data stored in the

student's Person superclass.

2.2.6.7 Roles and inheritance:

One consequence of separation of roles and super classes is that compile- time and run-

time aspects of the object system are cleanly separated. Inheritance is then clearly

a compile-time construct. Inheritance does influence the structure of many objects at

run-time, but the different kinds of structure that can be used are already fixed at compile-

time.

To model the example of Person as an employee with this method, the modelling

ensures that a Person class can only contain operations or data that are common to every

Person instance regardless of where they are used. This would prevent use of a Job

member in a Person class, because every person does not have a job, or at least it is not

known that the Person class is only used to model Person instances that have a job. Instead,

object-oriented design would consider some subset of all person objects to be in

an "employee" role. The job information would be associated only to objects that have the

employee role. Object-oriented design would also model the "job" as a role, since a job can

be restricted in time, and therefore is not a stable basis for modelling a class. The

corresponding stable concept is either "Workplace" or just "Work" depending on which

concept is meant. Thus, from object- oriented design point of view, there would be

a "Person" class and a "Workplace" class, which are related by a many-to-many

association "works- in", such that an instance of a Person is in employee role, when he works-

in a job, where a job is a role of his work place in the situation when the employee works in it.

Note that in this approach, all classes that are produced by this design process are

part of the same domain, that is, they describe things clearly using just one terminology.

This is often not true for other approaches.

The difference between roles and classes is especially difficult to understand if referential

transparency is assumed, because roles are types of references and classes are types of the

referred-to objects.

In this example, a Student is a type of Person. Likewise, a Employee is a type of Person. Both

Student and Employee inherit all the attributes and methods of Person. Student has a locally

defined student ID attribute. Employee has a locally defined employee ID attribute.

So, if you would look at a Student object, you would see attributes of name, date of birth,

parents, children, and student ID.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

S.NO RGPV QUESTIONS Year Marks

1. What are the advantages of code reusability? What is

containership? How does it differ from inheritance

Dec,2009 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

UNIT 1/LECTURE 6

 Types of Inheritance [RGPV /DEC-2008(8),DEC-2010(8)]

 There are many ways a derived class inherits properties from the base class.

Following are the types of inheritance:

• Single Inheritance

• Multiple Inheritance

• Multilevel Inheritance

• Hierarchical Inheritance

 • Multipath Inheritance

• Hybrid Inheritance

 Single Inheritance

When a (derived) class inherits properties (data and operations) from a single base class, it

is called as single inheritance. For example, Student class inherits properties from Person

class.

Person

name address

………..

getName()

getAddress() ….....

Student

rollNo course

………..

getRollNo()

getCourse() ….....

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

Multiple Inheritance

When a (derived) class inherits properties (data and operations) from more than one base

class, it is called as multiple inheritance. For example, BoatHouse class inherit

properties from both Boat class and House class.

Multilevel Inheritance

When a (derived) class inherits properties (data and operations) from another derived class, it

is called as multilevel inheritance. For example, Rectangle class inherits properties from

Shape class and Square inherits properties from Rectangle class.

Hierarchical Inheritance

When more than one (derived) class inherits properties (data and operations) from a single

base class, it is called as hierarchical inheritance. For example, Chair class, Table class and

BOAT HOUSE

BOATHOUSE

SHAPE

RECTANGLE

SQUARE

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

Bed class all inherit properties from Furniture class.

Multipath Inheritance

When more than one inheritance paths are available between two classes in the inheritance

hierarchy, it is called as multipath inheritance. For example, Carnivorous and Herbivorous

class inherit properties from Animal class. Omnivorous class inherits properties from

Carnivorous and Herbivorous classes. So, there are two alternative paths available from

Animal class to Omnivorous class.

Animal

Carnivorous

 Herbivorous

 Omnivorous

CHAIR TABLE BED

FURNITURE

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

C

Ook

C++

 Java

 C#

Hybrid Inheritance

Mixture of single, multiple, hierarchical and multilevel inheritance forms hybrid inheritance

OAK

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

S.NO RGPV QUESTION YEAR MARKS

1. What are the different forms of

inheritance ? give an example for each

Dec

2010,Dec,2008

8

2 Dicuss in brief multiple inheritance

and disinheritance

Dec,2008 4

UNIT 1/LECTURE 7

DYNAMIC INHERITANCE

Dynamic inheritance allows objects to change and evolve over time. Since base classes

provide properties and attributes for objects, changing base classes changes the properties

and attributes of a class. A previous example was a Windows object changing into an icon

and then back again, which involves changing a base class between a Windows class

and an Icon class. More specifically, dynamic inheritance refers to the ability to add, delete,

or change parents from objects (or classes) at run time.

In object-oriented programming languages, variables can be declared to hold or reference

objects of a particular class. For example, a variable declared to reference a motor vehicle is

capable of referencing a car or a truck or any subclass of motor vehicle.

MULTIPLE INHERITANCE

Some object-oriented systems permit a class to inherit its state (attributes) and

behaviors from more than one super class. This kind of inheritance is referred to as

multiple inheritance. For example, a utility vehicle inherits attributes from both the Car and

Truck classes.

Multiple inheritance can pose some difficulties. For example, several distinct

parent classes can declare a member within a multiple inheritance hierarchy. This then can

become an issue of choice, particularly when several super classes define the same

method. It also is more difficult to understand programs written in multiple inheritance

systems.

One way of achieving the benefits of multiple inheritance in a language with

single inheritance is to inherit from the most appropriate class and then add an object of

another class as an attribute.

Encapsulation [RGPV /DEC-2010(5)]

Encapsulation is one of the loosely defined OOAD concepts. The term is known in software

development for many years but I can't find any reliable origin. Encapsulation was mentioned

in the article describing abstraction mechanisms in programming language CLU in the context

of hiding details of implementation.

CLU restricted access to the implementation by allowing using only (public) cluster operations,

i.e. public interface. It promoted design practices where abstractions are used to define and

simplify the connections between system modules and to encapsulate implementation

decisions that are likely to change.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

If we look up the English word encapsulate in a dictionary, we will find two meanings: (1) to

encase or become enclosed in a capsule (2) to express in a brief summary, epitomise. Both of

these meanings of encapsulation seem appropriate in the context of OOAD.

Let's assume that the definition of encapsulation in OOAD is something like:

Encapsulation is a development technique which includes

 creating new data types (classes) by combining both information (structure) and

behaviors, and

 restricting access to implementation details.

Encapsulation is very close or similar to the abstraction concept. The difference is probably in

"direction" - encapsulation is more about hiding (encapsulating) implementation details while

abstraction is about finding and exposing public interfaces. The two concepts are supported by

access control.

Access control allows both to hide implementation (implementation hiding or information

hiding) and to expose public interface of a class.

Encapsulation in UML

UML specifications provide no definition of encapsulation but use it loosely in several

contexts.

For example, in UML 1.4 object is defined as an entity with a well defined boundary and

identity that encapsulates state (attributes and relationships) and behavior (operations,

methods, and state machines). Elements in peer packages are encapsulated and are not a

priori visible to each other.

In UML 2.4 and 2.5 a component represents a modular part of a system that encapsulates its

contents and whose manifestation is replaceable within its environment, and also a

Component is encapsulated and ... as a result, Components and subsystems can be flexibly

reused and replaced by connecting ("wiring") them together.

Encapsulated classifier in UML 2.4 and 2.5 is a structured classifier isolated from its

environment (encapsulated ?) by using ports. Each port specifies a distinct interaction point

between classifier and its environment.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

Library Services is classifier encapsulated through Search Port

UML 2.4 specification also used term completely encapsulated without providing any

explanation. It was removed in UML 2.5.

Aggregation [RGPV /JUNE-2008(10)]

A plain association between two classes represents a structural relationship between

peers, meaning that both classes are conceptually at the same level, no one more

important than the other. Sometimes, you will want to model a "whole/part" relationship,

in which one class represents a larger thing (the "whole"), which consists of smaller things

(the "parts"). This kind of relationship is called aggregation, which represents a "has-a"

relationship, meaning that an object of the whole has objects of the part. Aggregation is

really just a special kind of association and is specified by adorning a plain association with

an open diamond at the whole end.

Note

The meaning of this simple form of aggregation is entirely conceptual. The open diamond

distinguishes the "whole" from the "part," no more, no less. This means that simple

aggregation does not change the meaning of navigation across the association between the

whole and its parts, nor does it link the lifetimes of the whole and its parts.

S.NO RGPV QUESTION YEAR MARKS

1. What is data encapsulation? How can

we implement in any object oriented

language

Dec,2010 5

2. Discuss among

association,aggregation, inheritance

and relationship among

classes,quoting suitable examples

June 2008 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

UNIT 1/LECTURE 8
 AGGREGATIONS AND OB.JECT CONTAINMENT

All objects, except the most basic ones, are composed of and may contain other

objects. For example, a spreadsheet is an object composed of cells, and cells are objects

that may contain text, mathematical formulas, video, and so forth. Breaking down objects

into the objects from which they are composed is decomposition. This is possible because an

object's attributes need not be simple data fields; attributes

can reference other objects. Since each object has an identity, one object can refer to

other objects. This is known as aggregation, where an attribute can be an object itself. For

instance, a car object is an aggregation of engine, seat, wheels, and other objects (see

Figure2.9).

A Car object is an aggregation of other objects such as engine, seat, and wheel objects.

Abstraction classes:

Classes with no instances are called abstract classes. An abstract class is written with

the expectation that its subclasses will add to its structure and behavior, usually by

completing the implementation of its (typically) incomplete methods. In fact, in

Smalltalk a developer may force a subclass to redefine the method introduced in

an abstract class by using the method subclassResponsibility to implement a body for

the abstract class's method. If the subclass fails to redefine it, then invoking the

method results in an execution error. C++ similarly allows the developer to assert

that an abstract class's method cannot be involced direaly by initializing its

declaration to zero. Such a method is called a pure virtual function, and the language

prohibits the creation of instances whose class exports such functions.

Standard protocols are often represented by abstract classes.

An abstract class never has instances, only its subclasses have instances. The roots of class

hierarchies are usually abstract classes while the leaf classes are never abstract. Abstract

classes usually do not define any instance variables. However, they define methods in terms of

a few undefined methods that must be implemented by the subclasses. For example, class

Collection is abstract, and defines a number of methods, including select:,collect:, and

inject:into:, in terms of an iteration method, do:. Subclasses of Collection, such as Array,

Set, and Dictionary, define do: and are then able to use the methods that they inherited

from Collection. Thus, abstract classes can be used much like program skeletons, where the

user fills in certain options and reuses the code in the skeleton.

A class that is not abstract is concrete. In general, it is better to inherit from an abstract

class than from a concrete class. A concrete class must provide a definition for its data

representation, and some subclasses will need a different representation. Since an abstract

class does not have to provide a data representation, future subclasses can use any

representation without fear of conflicting with the one that they inherited.

Creating new abstract classes is very important, but is not easy. It is always easier to reuse a

nicely packaged abstraction than to invent it. However, the process of programming in

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

Smalltalk makes it easier to discover the important abstractions. A Smalltalk programmer

always tries to create new classes by making them be subclasses of existing ones, since

this is less work than creating a class from scratch. This often results in a class hierarchy

whose top-most class is concrete. The top of a large class hierarchy should almost always be an

abstract class, so the experienced programmer will then try to reorganize the class

hierarchy and find the abstract class hidden in the concrete class. The result will be a new

abstract class that can be reused many times in the future.

An example of a Smalltalk class that needs to be reorganized is View, which defines a user-

interface object that controls a region of the screen. View has 27 subclasses in the standard

image, but is concrete. A careful examination reveals a number of assumptions made in

View that most of its subclasses do not use. The most important is that each view will have

subviews. In fact, most subclasses of View implement views that can never have subviews.

Quite a bit of code in View deals with adding and positioning subviews, making it very

difficult for the beginning programmer to understand the key abstractions that View

represents. The solution is simple: split View into two classes, one (View) of which is the

abstract superclass and the other (ViewWithSubviews) of which is a concrete subclass that

implements the ability to have subviews. The result is much easier to understand and to reuse.

Inheritance vs. decomposition

Since inheritance is so powerful, it is often overused. Frequently a class is made a subclass

of another when it should have had an instance variable of that class as a component.

For example, some object-oriented user-interface systems make windows be a subclass of

Rectangle, since they are rectangular in shape. However, it makes more sense to make the

rectangle be an instance variable of the window. Windows are not necessarily rectangular,

rectangles are better thought of as geometric values whose state cannot be changed, and

operations like moving make more sense on a window than on a rectangle.

Behavior can be easier to reuse as a component than by inheriting it. There are at

least two good examples of this in Smalltalk-80. The first is that a parser inherits the

behavior of the lexical analyzer instead of having it as a component. This caused problems

when we wanted to place a filter between the lexical analyzer and the parser without

changing the standard compiler. The second example is that scrolling is an inherited

characteristic, so it is difficult to convert a class with vertical scrolling into one with no

scrolling or with both horizontal and vertical scrolling. While multiple inheritance

might solve this problem, it has problems of its own. Moreover, this problem is easy to

solve by making scrollbars be components of objects that need to be scrolled.

Most object-oriented applications have many kinds of hierarchies. In addition to class

inheritance hierarchies, they usually have instance hierarchies made up of regular objects.

For example, a user-interface in Smalltalk consists of a tree of views, with each subview being

a child of its superview. Each component is an instance of a subclass of View, but the root of

the tree of views is an instance of StandardSystemView. As another example, the Smalltalk

compiler produces parse trees that are hierarchies of parse nodes. Although each node is

an instance of a subclass of ParseNode, the root of the parse tree is an instance of

MethodNode, which is a particular subclass. Thus, while View and ParseNode are the

abstract classes at the top of the class hierarchy, the objects at the top of the instance

hierarchy are instances of StandardSystemView and MethodNode.

This distinction seems to confuse many new Smalltalk programmers. There is

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

often a phase when a student tries to make the class of the node at the top of the instance

hierarchy be at the top of the class hierarchy. Once the disease is diagnosed, it can be easily

cured by explaining the differences between the instance and class hierarchies.

Polymorphism [RGPV /DEC-2013(10),DEC-2010(10)]

Poly means "many" and morph means "form." In the context of object-oriented systems, it

means objects that can take on or assume many different forms. Polymorphism

means that the same operation may behave differently on different classes. Booch defines

polymorphism as the relationship of objects of many different classes by some common

super class; thus, any of the objects designated by this name is able to respond to some

common set of operations in a different way. For example, consider how driving an automobile

with a manual transmission is different from driving a car with an automatic transmission.

The manual transmission requires you to operate the clutch and the shift, so in addition to

all other mechanical controls, you also need information on when to shift gears. Therefore,

although driving is a behavior we perform with all cars (and all motor vehicles), the specific

behavior can be different, and depending on the kind of car we are driving. A car with an

automatic transmission might implement its drive method to use information such as current

speed, engine RPM, and current gear.

Polymorphism allows us to write generic, reusable code more easily, because we can specify

general instructions and delegate the implementation details to the objects involved. Since no

assumption is made about the class of an object that receives a message, fewer dependencies

are needed in the code and, therefore, maintenance is easier. For example, in a payroll system,

manager, office worker, and production worker objects all will respond to the compute payroll

message, but the actual operations performed by are object specific.

Operations are performed on objects by ``sending them a message'' (The object-

oriented programming community does not have a standardized vocabulary. While

``sending a message'' is the most common term, and is used in the Smalltalk and Lisp

communities, C++ programmers refer to this as ``calling a virtual function''.) Messages in a

language like Smalltalk should not be confused with those in distributed operating systems.

Smalltalk messages are just late-bound procedure calls. A message send is implemented

by finding the correct method (procedure) in the class of the receiver (the object to which

the message is sent), and invoking that method. Thus, the expression a + b will invoke different

methods depending upon the class of the object in variable a.

Message sending causes polymorphism. For example, a method that sums the elements in

an array will work correctly whenever all the elements of the array understand the addition

message, no matter what classes they are in. In fact, if array elements are accessed by

sending messages to the array, the procedure will work whenever it is given an argument

that understands the array accessing messages.

Polymorphism is more powerful than the use of generic procedures and packages

n Ada. A generic can be instantiated by macro substitution, and the resulting procedure

or package is not at all polymorphic. On the other hand, a Smalltalk object can access an

array in which each element is of a different class. As long as all the elements understand the

same set of messages, the object can interact with the elements of the array without

regard to their class. This is particularly useful in windowing systems, where the array

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

could hold a list of windows to be displayed. This could be simulated in Ada using variant

records and explicitly checking the tag of each window before displaying it, thus ensuring that

the correct display procedure was called. However, this kind of programming is dangerous,

because it is easy to forget a case. It leads to software that is hard to reuse, since minor

modifications are likely to add more cases. Since the tag checks will be widely

distributed through the program, adding a case will require wide-spread modifications before

the program can be reused

S.NO RGPV QUESTION YEAR MARKS

1. How is polymorphism achieved

at compile time and run time

Dec,2013 10

2. What is polymorphism and

what are various types of it?

Dec,2010 10

UNIT 1/LECTURE 9

link and association [RGPV /DEC-2009(10),DEC-2008(8)]

Association

Associations and dependencies (but not generalization relationships) may be reflective

An association is a structural relationship that specifies that objects of one thing are

connected to objects of another. Given an association connecting two classes, you can

navigate from an object of one class to an object of the other class, and vice versa. It's quite

legal to have both ends of an association circle back to the same class. This means that,

given an object of the class, you can link to other objects of the same class. An association

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

that connects exactly two classes is called a binary association. Although it's not as

common, you can have associations that connect more than two classes; these are called n-

ary associations. Graphically, an association is rendered as a solid line connecting the same

or different classes. Use associations when you want to show structural relationships.

Beyond this basic form, there are four adornments that apply to associations.

Name

An association can have a name, and you use that name to describe the nature of the

relationship. So that there is no ambiguity about its meaning, you can give a direction to

the name by providing a direction triangle that points in the direction you intend to read

the name,

Association Names

Note

Although an association may have a name, you typically don't need to include one if you

explicitly provide role names for the association, or if you have a model with many

associations and you need to refer to or distinguish among associations. This is especially

true when you have more than one association connecting the same classes.

Roles are related to the semantics of interfaces Role

When a class participates in an association, it has a specific role that it plays in that

relationship; a role is just the face the class at the near end of the association presents to

the class at the other end of the association. You can explicitly name the role a class plays

in an association. a Person playing the role of employee is associated with a Company playing

the role of employer.

 Roles

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

Note

The same class can play the same or different roles in other associations.

 An instance of an association is called a link

Multiplicity

An association represents a structural relationship among objects. In many modeling

situations, it's important for you to state how many objects may be connected across an

instance of an association. This "how many" is called the multiplicity of an association's

role, and is written as an expression that evaluates to a range of values or an explicit value.

When you state a multiplicity at one end of an association, you are specifying that, for

each object of the class at the opposite end, there must be that many objects at the near

end. You can show a multiplicity of exactly one (1), zero or one (0..1), many (0..*), or one

or more (1..*). You can even state an exact number (for example, 3).

Multiplicity

Note

You can specify more complex multiplicities by using a list, such as 0..1, 3..4, 6..*, which

would mean "any number of objects other than 2 or 5."

ASSOCIATIONS

Association represents the relationships between objects and classes. For example, in

the statement "a pilot can fly planes" (Figure 2.7) the italicized term is an association.

Associations are bidirectional; that means they can be traversed in both directions,

perhaps with different connotations. The direction implied by the name is the forward

direction; the opposite direction is the inverse direction. For example, can fly connects a

pilot to certain airplanes. The inverse of can fly could be called is flown by.

An important issue in association is cardinality, which specifies how many

instances of one class may relate to a single instance of an associated class. Cardinality

constrains the number of related objects and often is described as being "one" or "many,"

Generally, the multiplicity value is a single interval, but it may be a set of disconnected

intervals. For example, the number of cylinders in an engine is four, six, or eight.

Consider a client-account relationship where one client can have one or more accounts

and vice versa (in case of joint accounts); here the cardinality of the client-account

association is many to many.

Consumer-Producer Association

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

A special form of association is a consumer-producer relationship, also known as a

client-server association or a use relationship. The consumer-producer relationship can be

viewed as one-way interaction: One object requests the service of another object. The object

that makes the request is the consumer or client, and the object that receives the request

and provides the service is the producer or server.

 Association represents the relationship among objects, which is bidirectional.

The consumer/producer association.

For example, we have a print object that prints the consumer object. The print producer

provides the ability to print other objects. Figure 2.8 depicts the consumer-producer

association

Need for object oriented approach

Object Oriented Methodology closely represents the problem domain. Because of this, it

is easier to produce and understand designs.

The objects in the system are immune to requirement changes. Therefore, allows changes

more easily.

Object Oriented Methodology designs encourage more re-use. New applications can use

the existing modules, thereby reduces the development cost and cycle time.

Object Oriented Methodology approach is more natural. It provides nice structures

for thinking and abstracting and leads to modular design

we dont take any liability for the notes correctness. http://www.rgpvonline.com

33

S.NO RGPV QUESTION YEAR MARKS

1 Explain links and association

with suitable example

Dec,2009 10

 2 Explain links and association

with example, also give the

importance of association

 Dec,2008 8

we dont take any liability for the notes correctness. http://www.rgpvonline.com

