
1

UNIT – 3

Object oriented Design

Unit-03/Lecture-01

Overview of object design [RGPV /DEC-2012(10),June-2012(10)]

 Object-oriented analysis, design and programming are related but distinct.

 OOA is concerned with developing an object model of the application domain.

 OOD is concerned with developing an object-oriented system model to

implement requirements.

 OOP is concerned with realising an OOD using an OO programming language

such as Java or C++.

Characteristics of OOD

 Objects are abstractions of real-world or system entities and manage

themselves.

 Objects are independent and encapsulate state and representation information.

 System functionality is expressed in terms of object services.

 Shared data areas are eliminated.

 Objects communicate by message passing.

 Objects may be distributed and may execute sequentially or in parallel.

Advantages of OOD

 Easier maintenance. Objects may be understood as stand-alone entities.

 Objects are potentially reusable components.

 For some systems, there may be an obvious mapping from real world entities to

system objects.

Object Design

The object design phase determines the full definitions of the classes and associations

used in the implementation, as well as the interfaces and algorithms of the methods

used to implement operations. The object design phase adds internal objects for

implementation and optimizes data structures and algorithms.

Overview of Object Design

During object design, the designer carries out the strategy chosen during the system

design and fleshes out the details. There is a shift in emphasis from application

domain concepts toward computer concepts. The objects discovered during analysis

serve as the skeleton of the design, but the object designer must choose among

different ways to implement them with an eye toward minimizing execution time,

memory and other measures of cost. The operations identified during the analysis

must be expressed as algorithms, with complex operations decomposed into simpler

internal operations.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

The classes, attributes and associations from analysis must be implemented as

specific data structures. New object classes must be introduced to store

intermediate results during program execution and to avoid the need for

recomputation. Optimization of the design should not be carried to excess, as ease of

implementation, maintainability, and extensibility are also important concerns.

Steps of Design:

During object design, the designer must perform the following steps:

1. Combining the three models to obtain operations on classes.

2. Design algorithms to implement operations.

3. Optimize access paths to data.

4. Implement control for external interactions

5. Adjust class structure to increase inheritance. 6. Design associations.

7. Determine object representation.

8. Package classes and associations into modules.

Combining the three models to obtain operations on classes.

After analysis, we have object, dynamic and functional model, but the object model is

the main framework around which the design is constructed. The object model from

analysis may not show operations. The designer must convert the actions and

activities of the dynamic model and the processes of the functional model into

operations attached to classes in the object model. Each state diagram describes the

life history of an object. A transition is a change of state of the object and maps into

an operation on the object.

We can associate an operation with each event received by an object. In the state

diagram, the action performed by a transition depends on both the event and the

state of the object. Therefore, the algorithm implementing an operation depends

on the state of the object. If the same event can be received by more than one

state of an object, then the code implementing the algorithm must contain a case

statement dependent on the state. An event sent by an object may represent an

operation on another object.

Events often occur in pairs, with the first event triggering an action and the second

event returning the result on indicating the completion of the action. In this case, the

event pair can be mapped into an operation performing the action and returning the

control provided that the events are on a single thread. An action or activity

initiated by a transition in a state diagram may expand into an entire dfd in the

functional model .The network of processes within the dfd represents the body of an

operation.

The flows in the diagram are intermediate values in operation. The designer convert

the graphic structure of the diagram into linear sequence of steps in the

algorithm .The process in the dfd represent sub operations. Some of them, but
we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

not necessarily all may be operations on the original target object or on other

objects. Determine the target object of a sub operation as follows:

* If a process extracts a value from input flow then input flow is the target.

* Process has input flow or output flow of the same type, input output flow is the

target.

* Process constructs output value from several input flows, then the operation is a

class operation on output class.

* If a process has input or an output to data store or actor, data store or actor is the

target.

S.NO RGPV QUESTIONS Year Marks

1. What is object design? Explain the idea behind

designing the object

RGPV, Dec.

2012

10

2. What are various steps involved in object

oriented design? Explain in brief

RPPV, JUNE

2012

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

UNIT-03

TOPIC: DESIGNING ALGORITHMS

UNIT-03/LECTURE-02

Designing algorithms [RGPV /DEC-2012(10),DEC-2011(10)]

Each operation specified in the functional model must be formulated as an algorithm.

The analysis specification tells what the operation does from the view point of its

clients, but the algorithm shows how it is done. The analysis specification tells what

the operation does from the view point of its clients, but the algorithm shows how it is

done. An algorithm may be subdivided into calls on simpler operations, and so on

recursively, until the lowest-level operations are simple enough to implement directly

without refinement .The algorithm designer must decide on the following:

i) Choosing algorithms

Many operations are simple enough that the specification in the functional model

already constitutes a satisfactory algorithm because the description of what is done

also shows how it is done. Many operations simply traverse paths in the object link

network or retrieve or change attributes or links.

Non trivial algorithm is needed for two reasons:

 To implement functions for which no procedural specification

 To optimize functions for which a simple but inefficient algorithm serves as

a definition.

Some functions are specified as declarative constraints without any procedural

definition. In such cases, you must use your knowledge of the situation to invent an

algorithm. The essence of most geometry problems is the discovery of appropriate

algorithms and the proof that they are correct. Most functions have simple

mathematical or procedural definitions. Often the simple definition is also the best

algorithm for computing the function or else is also so close to any other algorithm

that any loss in efficiency is the worth the gain in clarity. In other cases, the simple

definition of an operation would be hopelessly inefficient and must be implemented

with a more efficient algorithm.

For example, let us consider the algorithm for search operation .A search can be done in

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

two ways like binary search (which performs log n comparisons on an average) and a

linear search (which performs n/2 comparisons on an average).Suppose our search

algorithm is implemented using linear search , which needs more comparisons. It

would be better to implement the search with a much efficient algorithm like binary

search.

Considerations in choosing among alternative algorithm include:

a) Computational Complexity:

It is essential to think about complexity i.e. how the execution time (memory) grows

with the number of input values.

For example: For a bubble sort algorithm, ti e ∞ n2

Most other algorithms, time ∞ log n

b) Ease of implementation and understand ability:

It is worth giving up some performance on non critical operations if they can be

implemented quickly with a simple algorithm.

c) Flexibility:

Most programs will be extended sooner or later. A highly optimized algorithm often

sacrifices readability and ease of change. One possibility is to provide two

Implementations of critical applications, a simple but inefficient algorithm that can be

implemented, quickly and used to validate the system, and a complicated but efficient

algorithm whose correct implementation can be checked against the simple one.

d) Fine Timing the Object Model:

We have to think, whether there would be any alternatives, if the object model were

structured differently.

ii) Choosing Data Structures

Choosing algorithms involves choosing the data structures they work on. We must

choose the form of data structures that will permit efficient algorithms. The data

structures do not add information to the analysis model, but they organize it in a form

convenient for the algorithms that use it.

iii) Defining Internal Classes and Operations

During the expansion of algorithms, new classes of objects may be needed to hold

intermediate results. New, low level operations may be invented during the

decomposition of high level operations. A complex operation can be defined in terms of

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

lower level operations on simpler objects. These lower level operations must be

defined during object design because most of them are not externally visible. Some of

these operations were found from shopping –list . There is a need to add new

internal operations as we expand high –level functions. When you reach this point

during the design phase, you may have to add new classes that were not mentioned

directly in the client’s description of the problem. These low-level classes are the

implementation elements out of which the application classes are built.

iv) Assigning Responsibility for Operations

Many operations have obvious target objects, but some operations can be performed

at several places in an algorithm, by one of the several places, as long as they

eventually get done. Such operations are often part of a complex high-level operation

with many consequences. Assigning responsibility for such operations can be

easy to overlook in laying out object classes because they are not an inherent part of

one class. When a class is meaningful in the real world, then the operations on it are

usually clear. During implementation, internal classes are introduced.

How do you decide what class owns an operation?

When only one object is involved in the operation, tell the object to perform the

operation. When more than one object is involved, the designer must decide which

object plays the lead role in the operation. For that, ask the following questions:

Is one object acted on while the other object performs the action? It is best to

associate the operation with the target of the operation, rather than the

initiator.

Is one object modified by the operation, while other objects are only queried for the

information they contain? The object that is changed is the target. Looking at the

classes and associations that are involved in the operation, which class is the most

centrally-located in this sub network of the object model? If the classes and

associations form a star about a single central class, it is the target of the operation.

If the objects were not software, but the real world objects represented

internally, what real world objects would you push, move, activate or

manipulate to initiate operation?

Assigning an operation within a generalization hierarchy can be difficult. Since the

definitions of the subclasses within the hierarchy are often fluid and can be adjusted

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

during design as convenient. It is common to move an operation up and down in the

hierarchy during design, as its scope is adjusted

S.NO RGPV QUESTIONS Year Marks

1. What do you understand by algorithm

designing?

RGPV, Dec.

2012

10

2. Discuss in detail the process of designing

algorithms in object oriented design

RGPV, Dec.

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

UNIT-03

TOPIC: DESIGN OPTIMIZATION

UNIT-03/LECTURE-03

Design Optimization [RGPV /DEC-2010(10),DEC-2011(10)]

The basic design model uses the analysis model as the framework for implementation.

The analysis model captures the logical information about the system, while the design

model must add details to support efficient information access. The inefficient but semantically

correct analysis model can be optimized to make the implementation more efficient,

but an optimized system is more obscure and less likely to be reusable in another context.

The designer must strike an appropriate balance between efficiency and clarity. During

design optimization, the designer must

Add Redundant Associations for Efficient Access During analysis, it is undesirable to have

redundancy in association network because redundant associations do not add any information.

During design, however we evaluate the structure of the object model for an implementation.

For that, we have to answer the following questions:

* Is there a specific arrangement of the network that would optimize critical aspects of the

completed system?

* Should the network be restructured by adding new associations? * Can existing associations be

omitted?

The associations that were useful during analysis may not form the most efficient network

when the access patterns and relative frequencies of different kinds of access are

considered. In cases where the number of hits from a query is low because only a fraction of

objects satisfy the test, we can build an index to improve access to objects that must be

frequently retrieved.

i) Analyze the use of paths in the association network as follows:

Examine each operation and see what associations it must traverse to obtain its information.

Note which associations are traversed in both directions, and which are traversed in a single

direction only, the latter can be implemented efficiently with one way pointers.

For each operation note the following items:

How often is the operation called? How costly is to perform?

What is the fan-out along a path through the network? Estimate the average count of each

any association encountered along the path. Multiply the individual fan-outs to obtain

the fan-out of the entire path; which represents the number of accesses on the last class in

the path. Note that o e links do not increase the fan-out, although they increase the cost

of each operation slightly, don’t worry about such small effects.

What is the fraction of hits on the final class, that is, objects that meet selection criteria

(if any) and is operated on? If most objects are rejected during the traversal for some reason,

then a simple nested loop may be inefficient at finding target objects. Provide indexes for

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

frequent, costly operations with a low hit ratio because such operations are inefficient to

implement using nested loops to traverse a path in the network.

 ii) Rearranging Execution Order for Efficiency

After adjusting the structure of the object model to optimize frequent traversal, the next thing

to optimize is the algorithm itself. Algorithms and data structures are directly related to each

other, but we find that usually the data structure should be considered first. One key to

algorithm optimization is to eliminate dead paths as early as possible. Sometimes the

execution order of a loop must be inverted.

iii) Saving Derived Attributes to Avoid Re computation:

Data that is redundant because it can be derived from other data can be ached or store in its

computed form to avoid the overhead of re computing it. The class that contains the cached

data must be updated if any of the objects that it depends on are changed.

Derived attributes must be updated when base values change. There are 3 ways to recognize

when an update is needed:

Explicit update: Each attribute is defined in terms of one or more fundamental base

objects. The designer determines which derived attributes are affected by each change

to a fundamental attribute and inserts code into the update operation on the base object

to explicitly update the derived attributes that depend on it.

Periodic Re computation: Base values are updated in bunches. Re compute all derived attributes

periodically without re computing derived attributes after each base value is changed. Re

computation of all derived attributes can be more efficient than incremental update because

some derived attributes may depend on several base attributes and might be updated more

than once by incremental approach. Periodic re computation is simpler than explicit update

and less prone to bugs. On the other hand, if the data set changes incrementally a few

objects at a time, periodic re computation is not practical because too many derived

attributes must be recomputed when only a few are affected.

Active values: An active value is a value that has dependent values. Each dependent value

registers itself with the active value, which contains a set of dependent values and update

operations. An operation to update the base value triggers updates all dependent values, but

the calling code need not explicitly invoke the updates. It provides modularity

S.NO RGPV QUESTIONS Year Marks

1. What do ou u dersta d Desig Opti izatio RGPV, Dec.

2010

10

2. Explain what you understand by Desig Opti izatio
with the help of suitable examples.

RGPV, Dec.

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

UNIT-03

TOPIC:IMPLEMENTATION OF CONTROL

UNIT-03/LECTURE-04

 Implementation of Control [RGPV /June-2005(10)]

The designer must refine the strategy for implementing the state – event models present

in the dynamic model. As part of system design, you will have chosen a basic strategy for

realizing dynamic model, during object design flesh out this strategy.

There are three basic approaches to implementing the dynamic model:

i) State as Location within a Program:

This is the traditional approach to representing control within a program. The location of

control within a program implicitly defines the program state. Any finite state machine can be

implemented as a program. Each state transition corresponds to an input statement. After

input is read, the program branches depending on the input event received. Each input

statement need to handle any input value that could be received at that point. In highly

nested procedural code, low –level procedures must accept inputs that they may know

nothing about and pass them up through many levels of procedure calls until some

procedure is prepared to handle them. One technique of converting state diagram to code is

as follows:

1. Identify the main control path. Beginning with the initial state, identify a path through

the diagram that corresponds to the normally expected sequence of events. Write the

name of states along this path as a linear sequence of events. Write the names of states

along this path as a linear sequence .This becomes a sequence of statements in the program.

2. Identify alternate paths that branch off the main path and rejoin it later. These become

conditional statements in the program.

3. Identify backward paths that branch off the main loop and rejoin it earlier .These

become loops in program. If multiple backward paths that do not cross, they become nested

loops. Backward paths that cross do not nest and can be implemented with goto if all else

fails, but these are rare.

4. The status and transitions that remain correspond to exception conditions. They can be
we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

handled using error subroutines , exception handling supported by the language , or

setting and testing of status flags. In the case of exception handling, use goto

statements.

ii) State machine engine

The most direct approach to control is to have some way of explicitly representing and

executing state machine. For example, state machine engine class helps execute state

machine represented by a table of transitions and actions provided by the

application.

Each object instance would contain its own independent state variables but would call

on the state engine to determine next state and action.

This approach allows you to quickly progress from analysis model to skeleton prototype of

the system by defining classes from object model state machine and from dynamic model

and creating stubs of action routines.

A stub is a minimal definition of function /subroutine without any internal code. Thus if each

stub prints out its name, technique allows you to execute skeleton application to verify that

basic flow of control is correct. This technique is not so difficult.

iii) Control as Concurrent Tasks

An object can be implemented as task in programming language /operating system. It

preserves inherent concurrency of real objects.

Events are implemented as inter task calls using facilities of language/operating

system. Concurrent C++/Concurrent Pascal support concurrency. Major Object Oriented

languages do not support concurrency.

State-event model is a model which shows the sequence of events happening on an

object, and due to which there are changes in the state of an object .

In the state-event model, the events may occur concurrently and control resides directly in

several independent objects. As the object designer you have to apply a strategy for

implementing the state event model.

There are three basic approaches to implementing system design in dynamic models. These

approaches are given below:

• Using the location within the program to hold state (procedure-driven system).

• Direct implementation of a state machine mechanism (event-driven system).

• Using concurrent tasks.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

Control as State within Program

1. The term control literally means to check the effect of input within a program. For

example, in Figure1, after the ATM card is inserted (as input) the control of the program is

transferred to the next state (i.e., to request password state).

2. This is the traditional approach to represent control within a program. The location

of control within a program implicitly defines the program state. Each state transition

corresponds to an input statement.

After input is read, the program branches depending on the input event produce some

result.

Each input statement handles any input value that could be received at that point. In case

of highly nested procedural code, low-level procedures must accept inputs that may be

passed to upper level procedures.

After receiving input they pass them up through many levels of procedure calls. There must

be some procedure prepared to handle these lower level calls. The technique of converting

a state diagram to code is given as under:

a) Identify all the main control paths. Start from the initial state; choose a path

through the diagram that corresponds to the normally expected sequence of events.

Write the names of states along the selected path as a linear sequence. This will be a

sequence of statements in the program.

b) Choose alternate paths that branch off the main path of the program and rejoin it

later. These could be conditional statements in the program.

c) Identify all backward paths that branch off the main loop of the program and rejoin

it earlier. This could be the loop in the program. All non-intersecting backward paths

become nested loops in the program.

d) The states and transitions that remain unchecked correspond to exception

conditions. These can be handled by applying several techniques, like error subroutines,

exception handling supported by the language, or setting and testing of status flags.

To understand control as a state within a program, let us take the state model for the ATM

class showing the state model of the ATM class and the pseudo code derived from it.

In this process first, we choose the main path of control, this corresponds to the reading of

a card querying the user for transaction information, processing the transaction, printing a

receipt, and ejecting the card.
we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

If the customer wants to process for some alternates control that should be provided. For

example, if the password entered by the customer is bad, then the customer is asked to try

again.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Control of states and events in ATM
 we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

Pseudocode of ATM control. The pseudocode for the ATM is given as under:

These lines are the pseudocode for the ATM control loop, which is another form of

representation of Figure 1. Furthermore, you can add cancel event to the flow of control,

which could be implemented as goto exception handling code. Now, let us discuss controls

as a state machine engine.

Control as a State Machine Engine

First let us define state machine: the state machine is an object but not an application

object. It is a part of the language substrate to support the syntax of application object .
The common approach to implement control is to have some way of explicitly representing

and executing state machines. For example, a general state machine engine class could

provide the capability to execute a state machine represented by a table of transitions and

actions provided by the application. As you know, each object contains its own

independent state variable and could call on the state engine to determine the next state

and action.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

Control as Concurrent Tasks

The term control as concurrent task means applying control for those events of the object

that can occur simultaneously. An object can be implemented as a task in the programming

language or operating system. This is the most general approach of concurrency controls.

With this you can preserve the inherent concurrency of real objects. You can implement

events as inter-task calls using the facilities of the language, or operating system.

As far as OO programming languages are concerned, there are some languages, such as

Concurrent Pascal or Concurrent C++, which support concurrency, but the application of

such languages in production environments is still limited. Ada language supports

concurrency, provided an object is equated with an Ada task, although the run-time cost is

very high. The major object oriented languages do not yet support concurrency.

S.NO RGPV QUESTIONS Year Marks

1. What are the important issues in implementing object-

oriented systems?

RGPV, June

2005

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

UNIT-03

TOPIC: DESIGN OF AASSOCIATIONS

UNIT-03/LECTURE-05

Design of Associations [RGPV /DEC-2003(10),DEC-2007(10)]

During object design phase, we must formulate a strategy for implementing all associations

in the object model. We can either choose a global strategy for implementing all

associations uniformly, or a particular technique for each association.

i) Analyzing Association Traversal

Associations are inherently bidirectional. If association in your application is traversed

in one direction, their implementation can be simplified. The requirements on your

application may change , you may need to add a new operation later that needs to

traverse the association in reverse direction. For prototype work, use bidirectional

association so that we can add new behaviour and expand /modify. In the case of optimization

work, optimize some associations.

ii) One-way association

* If an association is only traversed in one direction it may be implemented as pointer.

* If multiplicity is „many‟ then it is implemented as a set of pointers. * If the many is

ordered, use list instead of set .

* A qualified association with multiplicity one is implemented as a dictionary object(A

dictionary is a set of value pairs that maps selector values into target values. * Qualified

association with multiplicity any are rare.(it is implemented as dictionary set of

objects).

iii) Two-way associations

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

Many associations are traversed in both directions, although not usually with equal

frequency. There are three approaches to their implementation:

Implement as an attribute in one direction only and perform a search when a backward

traversal is required. This approach is useful only if there is great disparity in traversal

frequency and minimizing both the storage cost and update cost are important.

Implement as attributes in both directions. It permits fast access, but if either attribute is

updated then the other attribute must also be updated to keep the link consistent .This

approach is useful if accesses outnumber updates

Implement as a distinct association object independent of either class. An association

object is a set of pairs of associated objects stored in a single variable size object. An

association object can be implemented using two dictionary object one for forward

direction and other for reverse direction.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

iv) Link Attributes

Its implementation depends on multiplicity.

 If it is a one-one association, link attribute is stored in any one of the classes involved.

 If it is a many-one association, the link attribute can be stored as attributes of many

object, since ea h a o ject appears only once in the association.

 If it is a many-many association, the link attribute can‟t be associated with either

object; implement association as distinct class where each instance is one link and its

attributes.

S.NO RGPV QUESTIONS Year Marks

1. Write Short note on design of associations RGPV, Dec.

2003

10

2. Write explanatory short note on design of association RGPV, Dec.

2007

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

UNIT-03

TOPIC: INHERITANCE ADJUSMENT

UNIT-03/LECTURE-06

INHERITANCE ADJUSTMENT [RGPV /DEC-2011(10)]

As you know in object oriented analysis and design the terms inheritance defines a

relationship among classes, wherein one class shares the structure or behavior defined in

one or more classes. As object design progresses, the definitions of classes and operations

can often be adjusted to increase the amount of inheritance. In this case, the designer

should:

 Rearrange and adjust classes and operations to increase inheritance

 Abstract common behaviour out of groups of classes

 Use delegation to share behaviour when inheritance is semantically invited.

Rearrange Classes and Operations

Sometimes, the same operation is defined across several classes and can easily be inherited

from a common ancestor, but more often operations in different classes are similar, but not

identical. By slightly modifying the definitions of the operations or the classes, the

operations can often be made to match so that they can be covered by a single inherited

operation. The following kinds of adjustments can be used to increase the chance of

inheritance

You will find that some operations may have fewer arguments than others. The missing

arguments can be added but ignored. For example, a draw operation on a monochromatic

display does not need a colour parameter, but the parameter can be accepted and ignored

for consistency with colour displays.

Some operations may have fewer arguments because they are special cases of more

general arguments. In this case, you may implement the special operations by calling the

general operation with appropriate parameter values. For example, appending an element

to a list is a special case of inserting an element into list; here the insert point simply

follows the last element.
we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

Similar attributes in different classes may have different names. Give the attributes the

same name and move them to a common ancestor class. Then operations that access the

attributes will match better. Also, watch for similar operations with different names. You

should note that a consistent naming strategy is important to avoid hiding similarities.

An operation may be defined on several different classes in a group, but be undefined on

the other classes. Define it on the common ancestor class and declare it as a no-op on the

classes that do not care about it. For example, in OMTool the begin-edit operation places

some figures, such as class boxes, in a special draw mode to permit rapid resizing while the

text in them is being edited. Other figures have no special draw mode, so the begin-edit

operation on these classes has no effect.

Making Common Behaviour Abstract

Let us describe abstraction Abstraction means to focus on the essential, inherent aspects

of an entity and ignoring its accidental properties . In other words, if a set of operations

and/or attributes seem to be repeated in two classes. There is a scope of applying

inheritance. It is possible that the two classes are really specialised variations of the

something when viewed at a higher level of abstraction.

When common behaviour has been recognised, a common super class can be created that

implements the shared features, leaving only the specialised features in the subclasses.

This transformation of the object model is called abstracting out a common super class or

common behaviour. Usually, the resulting super class is abstract, meaning that there are no

direct instances of it, but the behaviour it defines belongs to all instances of its subclasses.

For example, again we take a draw operation of a geometric figure on a display screen

requires setup and rendering of the geometry.

The rendering varies among different figures, such as circles, lines, and spines, but the

setup, such as setting the colour, line thickness, and other parameters, can be inherited by

all figure classes from abstract class figure.

The creation of abstract super classes also improves the extensibility of a software product,

by keeping space for further extension on base of abstract class.

Use Delegation to Share Implementation

As we now know, inheritance means the sharing of to the behaviour of a super class by its

subclass. Let us see how delegation could be used for this purpose. Before we use

delegation, let us try to understand that what actually delegation can do.

The term delegation Delegation consists of catching an operation on one object and

sending it to another object that is part, or related to the first object. In this process, only

meaningful operations are delegated to the second object, and meaningless operations can

be prevented from being inherited accidentally . It is true that Inheritance is a mechanism

for implementing generalization, in which the behaviour of super class is shared by all its
we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

subclasses. But, sharing of behaviour is justifiable only when a true generalization

relationship occurs, that is, only when it can be said that the subclass is a form of the super

class.

Let us take the example of implementation of inheritance. Suppose that you are about to

implement a Stack class, and you already have a List class available. You may be tempted to

make Stack inherit from List. Pushing an element onto the stack can be achieved by adding

an element to the end of the list and popping an element from a stack corresponds to

removing an element from the end of the list. But, we are also inheriting unwanted list

operations that add or remove elements from arbitrary positions in the list.

Often, when you are tempted to use inheritance as an implementation technique, you

could achieve the same goal in a safer way by making one class an attribute or associate of

the other class. In this way, one object can selectively invoke the desired functions of

another class, by using delegation rather than applying inheritance.

A safer implementation of Stack would delegate to the List class. Every instance of Stack

contains a private instance of List. The Stack :: push operation delegates to the list by

calling its last and add operations to add an element at the end of the list, and the pop

operation has a similar implementation using the last and remove operations. The ability to

corrupt the stack by adding or removing arbitrary elements is hidden from the client of the

Stack class.

Alternative implementations of a Stack using inheritance (left) and delegation (right)

it is obvious that we should discourage the use of inheritance to share the operations

between two related classes. Instead, we should use delegation so that one class can

selectively invoke the desired functions of another class. Now, you are aware of the

concept of inheritance and its adjustment. In the next section, we will discuss association

design and different types of associations.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

S.NO RGPV QUESTIONS Year Marks

1. Explain the adjustment of inheritance in classes and

operations

RGPV,

Dec.

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

UNIT-03

TOPIC:OBJECT REPRESENTATION

UNIT 3/LECTURE 7

 Object Representation [RGPV /DEC-2012(10)]

Implementing objects is mostly straight forward, but the designer must choose when to use

primitive types in representing objects and when to combine groups of related objects.

Classes can be defined in terms of other classes, but eventually everything must be

implemented in terms of built-in-primitive data types, such as integer strings, and enumerated

types. For example, consider the implementation of a social security number within an

employee object. It can be implemented as an attribute or a separate class.

Defining a new class is more flexible but often introduces unnecessary indirection. In a similar

vein, the designer must often choose whether to combine groups of related objects The

object designer has to choose when to use primitive types in representing the objects or

when to combine the groups of objects. A class can be defined in terms of other classes but

ultimately all data members have to be defined in terms of built- in data types supported by a

programming language. For example, roll no. can be implemented as integer or string. In

another example, a two dimensional can be represented as one class or it can be

implemented as two classes – Line class and Point class.

The ter o je t represe tatio ea s to represe t o je t usi g o je ts odel s ols .

Implementing objects is very simple. The object designer decides the use of primitive types or

to combine groups of related objects in their representation. We can define a class in terms of

other class. The classes must be implemented in terms of built-in primitive data types, such as

integers, strings, and enumerated types. For example, consider the implementation of a social

security number within an employee object which is shown in Figure 6. The social security

number attribute can be implemented as an integer or a string, or as an association to a social

security number object, which itself can contain either an integer or a string. Defining a new

class is more flexible, but often introduces unnecessary indirection. It is suggested that new

classes should not be defined unless there is a definite need it.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

S.NO RGPV QUESTION YEAR MARKS

1. How objects are represented? Explain

use-case driven approach.

RGPV, Dec.

2012

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

UNIT-03

TOPIC: PHYSICAL PACKAGING

UNIT 3/LECTURE 8

Physical Packaging [RGPV /June-2011(10),June-2012(10)]

Programs are made of discrete physical units that can be edited, compiled, imported, or

otherwise manipulated. In C and Fortran the units are source files; In Ada, it is packages. In

object oriented languages, there are various degrees of packaging. In any large project, careful

partitioning of an implementation into packages is important to permit different persons to

cooperatively work on a program.

Packaging involves the following issues:

i) Hiding internal information from outside view.

O e desig goal is to treat lasses as „ la k o es‟ , whose external interface is public but

whose internal details are hidden from view. Hiding internal information permits

implementation of a class to be changed without requiring any clients of the class to modify

code. Additions and changes to the class are surrou ded fire walls that li it the effe ts of

any change so that changes can be understood clearly. Trade off between information hiding

and optimization activities. During analysis, we are concerned with information hiding. During

design, the public interface of each class must be defined carefully. The designer must decide

which attributes should be accessible from outside the class. These decisions should be

recorded in the object model by adding the annotation {private} after attributes that are to be

hidden, or by separating the list of attributes into 2 parts. Taken to an extreme a method on a

class could traverse all the associations of the object model to locate and access another object

in the system .This is appropriate during analysis, but methods that know too much about the

entire model are fragile because any change in representation invalidates them. During design

we try to limit the scope of any one method. We need top define the bounds of visibility that

each method requires.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

Specifying what other classes a method can see defines the dependencies between classes.

Each operation should have a limited knowledge of the entire model, including the structure of

Classes, associations and operations. The fewer things that an operation knows about, the less

likely it will be affected by any changes. The fewer operations know about details of a class, the

easier the class can be changed if needed.

The following design principles help to limit the scope of knowledge of any operation:

 Allocate to each class the responsibility of performing operations and providing

information that pertains to it.

 Call an operation to access attributes belonging to an object of another class Avoid

traversing associations that are not connected to the current class. Define interfaces at

as high a level of abstraction as possible.

 Hide external objects at the system boundary by defining abstract interface classes, that

is, classes that mediate between the system and the raw external objects.

 Avoid applying a method to the result of another method, unless the result class is

already a supplier of methods to the caller. Instead consider writing a method to

combine the two operations.

ii) Coherence of entities.

One important design principle is coherence of entities. An entity, such as a class, an operation,

or a module, is coherent if it is organized on a consistent plan and all its parts fit together

toward a common goal. It shouldn’t be a collection of unrelated parts. A method should do one

thing well .a single method should not contain both policy and implementation.

A poli is the aki g of o te t depe de t de isio s. I ple e tatio is the e e utio of

full spe ified algorith s.

Policy involves making decisions, gathering global information, interacting with outside world

and interpreting special cases. Policy methods contain input output statements, conditionals

and accesses data stores. It doesn’t contain complicated algorithms but instead calls various

implementation methods. An implementation method does exactly one operation without

making any decisions, assumptions, defaults or deviations .All information is supplied as

arguments (list is long). Separating policy and implementation increase reusability. Therefore

implementation methods don’t contain any context dependency. So they are likely to be

reusable Policy method need to be rewritten in an application , they are simple and consists of

high level decisions and calls on low-level methods. A class shouldn’t serve too many purposes.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

iii) Constructing physical modules.

During analysis and system design phases we partitioned the object model into modules.

* The initial organization may not be suitable for final packaging of system implementation

New classes added to existing module or layer or separate module.

Modules should be defined so that interfaces are minimal and well defined. Connectivity of

object model can be used as a guide for partitioning modules. Classes that are closely

connected by associations should be in the same module. Loosely connected classes should be

grouped in separate modules. Classes in a module should represent similar kinds of things in

the application or should be components of the same composite object.

Try to encapsulate strong coupling within a module. Coupling is measured by number of

different operations that traverse a given association. The number expresses the number of

different ways the association is used, not the frequency.

Packaging of Classes and Associations into Modules

Modularity is the property of a system that has been decomposed into a set of cohesive

and loosely coupled modules. Modules serve as the physical containers in which we declare

the classes and objects of our logical designs. A module can be edited, compiled or

imported separately. Different object-oriented programming languages support the packing

in different ways. For example, Java supports in the form of package, C++ in the form of

header files etc.

Modules are program units that manage the visibility and accessibility of names. Following

purposes can be solved by modularity.

A module typically groups a set of class definitions and objects to implement some

service or abstraction.

 A module is frequently a unit of division of responsibility within a

programming team. A module provides an independent naming

environment that is separate from other modules within the program.

 Modules support team engineering by providing isolated name spaces.

Packaging involves the following three issues:

 Information Hiding

 Coherence of Entities

 Constructing Physical Modules

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

Information Hiding: During analysis phase we are not concerned with information hiding. So,

visibilities of class members are not specified during analysis phase. It is done during object

design phase. In a class, data members and internal operations should be hidden, so, they

should be specified as private. External operations form the interface so they should be

specified as public.

The following design principles can be used to design classes:

 A class should be given the responsibilities of performing the operations and

proving information contained in it to other classes.

 Calling a method of that class should access attributes of other class.

 Avoid traversing associations that are not connected to this class.

 Define interfaces at the highest level possible.

 External objects should be hidden. Defining interface classes could do this.

 Avoid applying a method to the result of another class unless the result class is

already a supplier of methods to the caller class.

Coherence of Entities: Module, class, method etc. are entities. An entity is said to coherent, if

it is organized on a consistent plan and all its parts fit together toward a common goal.

Policy is the making of context-dependent decisions while implementation is the

execution of fully specified algorithms. Policy involves making decisions, gathering global

information and interacting with the external agents. Policy and implementation

should be separated in different methods i.e. both should not be combined into a single

method.A policy method does not have complex algorithms rather invokes various

implementation methods. It can contain I/O statements, conditional statements and can

access data stores.

An implementation method does exactly one operation, without making any decision,

assumption, default or deviation. All its information is supplied by arguments. These methods

do not contain any context-dependent decision so they are likely to be reusable.

Constructing Physical Modules: Modules of analysis phase have changed as more classes

and associations have been added during object design phase. Now, the object designer has

to create modules with well-defined and minimal interfaces. The classes in a module should

have similar kinds of things in the system. There should be cohesiveness or unity of the

purpose in a module. So the classes, which are strongly associated, should be put into a single

module.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

S.NO RGPV QUESTION YEAR MARKS

 1. Describe the various issues involved in

packaging in programs.

RGPV, June

2011

10

 2. Discuss the issues involved in

packaging

RGPV, June.

2012

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

UNIT 3

TOPIC:DOCUMENTING DESIGN DECISIONS

UNIT 3/LECTURE 9

 Documenting Design Decisions [RGPV /DEC-2011(10),DEC-2012(10)]

The above design decisions must be documented when they are made, or you will become

confused. This is especially true if you are working with other developers. It is impossible to

remember design details for any non trivial software system, and documentation is the best

way of transmitting the design to others and recording it for reference during maintenance.

The design document is an extension of the Requirements Analysis Document.

-> The design document includes revised and much more detailed description of the object

model-both graphical and textual. Additional notation is appropriate for showing

implementation decisions, such as arrows showing the traversal direction of associations and

pointers from attributes to other objects.

-> Functional model will also be extended. It specifies all operation interfaces by giving their

arguments, results, input-output mappings and side effects.

-> Dynamic model – if it is implemented using explicit state control or concurrent tasks then

the analysis model or its extension is adequate. If it is implemented by location within program

code, then structured pseudocode for algorithms is needed.

Keep the design document different from analysis document .The design document includes

many optimizations and implementation artefacts. It helps in validation of software and for

reference during maintenance. Traceability from an element in analysis to element in design

document should be straightforward. Therefore the design document is an evolution of

analysis model and retains same names.

The Design Document will include a revised and much more detailed description of the

Object Model in both graphical form (object model diagrams) and textual form (class

descriptions). You can use additional notation to show implementation decisions, such as

arrows showing the traversal direction of associations and pointers from attributes to other

objects.

The Functional Model can also be extended during the design phase, and it must be kept

current. It is a seamless process because object design uses the same notation as analysis,

but with more detail and specifics. It is good idea to specify all operation interfaces by

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

giving their arguments, results, input-output mappings, and side effects.

Despite the seamless conversion from analysis to design, it is probably a good idea to keep

the Design Document distinct from the Analysis Document. Because of the shift in

viewpoint from an external user’s view to an internal implementer’s view, the design

document includes many optimizations and implementation artefacts. It is important to

retain a clear, user-oriented description of the system for use in validation of the completed

software, and also for reference during the maintenance phase of the object modelling

S.NO RGPV QUESTION YEAR MARKS

1. Discuss the documentation of

design decisions

RGPV, Dec. 2011 10

2. Explain physical packaging and

documenting design decision

RGPV, Dec. 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

