Unit [V- Quantum Mechanics

Unit-4

Quantum Mechanics

Syllabus:

to particle in a box.

Black body radiation, ultraviolet catastrophe, Crompton effect, plates
theory of radiation, phase and group velocity, particle in a box, uncertainty
principle, well-behaved wave equation, Schrodinger equation, application
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Unit [V- Quantum Mechanics

Black body:

A black body is one which absorbs all types of heat radiation
incident on it when radiations are permitted to fall on black body
they are neither reflected nor transmitted.

A black body is known as black body due to the fact that whatever
may the colour of the incident radiation the body appears black by
absorbing all kind of radiations incident on it.

A perfect black does not exists thus a body representing close
proximity to perfect black body so it can be considered as a black
body.

A hollow sphere is taken with fine hole and a point projection in
front of the hole and is coated with lamp black on its inner surface
shows the close proximity to the black body, when the radiation
enter through hole, they suffer multiple reflection and are totally Figure(1): Black body
absorbed.

Black Body radiation:

A body which completely absorbs radiation of all
radiations of all wavelength/frequencies incident
on it and emits all of them when heated at higher
temperature is called black body. The radiation
emitted by such a body is called black body
radiation. So the radiation emitted form a black
body is a continuous spectrum i.e. it contains
radiation of all the frequencies. gy R s O
Distributions of the radiant energy over different B R Y T R T
wavelength in the black body radiation at a given A

temperature are shown in the figure.

Black body radiation is a common synonym for Figure(2): Black body radiation

thermal radiation.
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Radiation:
Radiation is a process which the surface of an object radiates its thermal energy in the form of the
electromagnetic waves.

Radiation

Non-ionising
radiation

lonising
radiation

Radiations are of two types
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Unit [V- Quantum Mechanics

Emissivity:

The emissivity of a material is the irradiative power of its surface to emit heat by radiation, usually it is shown
by e or €. It is the ratio of energy radiated by a material to the energy radiated by the black body.

True black body has maximum emissivity & = (highly polished silver has an emissivity for about 0.02 at
least.)

Plank’s Quantum Hypothesis:
Plank assumes that the atoms of the wall of blackbody behave as an oscillator and each has a characteristic
frequency of oscillation. He made the following assumption-
1) An oscillator can have any arbitrary value of energy but can have only discrete energies as per the
following relation
E = nhv
Wheren = 0,1,2,3 and v.and h are known as frequency and Plank’s constant.
2) The oscillator can absorb or emit energy only in the form of packets of energy (hv) but not
continuously.
AE = Ahv

Average energy of Plank’s Oscillators:
If N be the total number of oscillations and E as the total energy of these oscillators, then average energy will
be given by the relation.

Now consider Ny, {y N.. .. .. p.as théV number of oscillators having the energy values
0, hv, 2hv .. respectikely. Then by the Maxwell’s distribution formula

N = No+ M M
— _hv _2hv
N = N1 +7k+ ekT + - .. .. .)
Ny
N = N 2
(1 B k@) (2)
And the total energy
_hv _2pv
E = (Nyx 0O+ ((Nsz X hv) O-E%N X 2hv> +
_hv _h _2hy
E = Nye kT x |Av + 28+ 3ekT + .- ]
_hv hv
k
= [Noe ¥ I (3)
)
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Unit [V- Quantum Mechanics

Putting the value of N and E from above equations in equation (1) we get-

— E
E = =
N
_h
B hve kT
E = 77y
(1 )
hv
E = BV N e et s (4)
(- 1)

This is the expression for the average energy in Plank’s oscillators.

Plank’s radiation formula:
The average density of radiation (u,) in the frequency range vandv + dhpending upon the average of an
oscillator is given by-

u,dv = 8::2 AU X E  cveerrerressnsnssssesessss s sssasssss s s (5)
8mv?  hv "

u,dv = c3 (eZ_lT/ B 1)
8Lh —V3 dv

u,dv = (3 (eZ_IT/ ~ 1) ........................................................... (6)

The above relation is known as the Plank’s radiation formula in terms of the frequency. This law can also be
expressed in terms of wavelength A of the radiation. Since v =% for electromagnetic radiation, dv =
_/1% dA. Further we know that the frequency is reciprocal of wavelength or in other words an increase in
frequency corresponds to a decrease in wavelength. therefore

wdi =  —u,dv
c\3 c
srn (7) (72 44)
(elkT— 1)
8mhc 1 i
= h
uda A5 (eﬁ— 1) ..................................................... (7)

The above relation is known as the Plank’s law in terms of wavelength (1)

Wien’s law and Rayleigh-Jeans law:

With the help of Plank’s radiation Wien’s law and Rayleigh-Jens law can be derive. When the wavelength (1)
hc
and temperature (T) are very small, then ezt >» . ITherefore, 1 can be neglected in the denominator of

equation (7).

8mh hc
wdl = ZSC e AkTdA
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Unit [V- Quantum Mechanics

By substituting 8mhc = antl % = JBwe get

A _B
wdl = e kTdA

This is known as Wien’s law, which is valid at low temperature T and small wavelength A.

hc
For higher temperature T and large wavelength A, eAkT can be approximated to 1 % Then we have from
equation (7)

8mh
wdd = ”hz dd
5 _
(1 - 1)
8wkT
wdi = Tda ........................................................................... (9)

This is known as Rayleigh-Jeans law.

Ultraviolet Catastrophe:

One of the nagging questions at the time concerned the spectrum of radiation emitted by a so-called black
body. A perfect black body is an object that absorbs all radiation that is incident on it. Perfect absorbers are
also perfect emitters of radiation, in the sense that heating the black body to a particular temperature causes
the black body to emit radiation with a spectrum that is characteristic of that temperature. Examples of black
bodies include the Sun and other stars, light bulb filaments, and the element in a toaster. The colours of

these objects correspond to the temperature of the object. Examples of the spectra emitted by objects at
particular temperatures are shown in Figure 3
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Figure 3: The spectra of electromagnetic radiation emitted by hot objects. Each spectrum corresponds to a
particular temperature. The black curve(dotted line) represents the predicted spectrum of a 5000 K black
body, according to the classical theory of black bodies

20 20

|
Page 5

http://www.rgpvonline.com http://www.a2zsubjects.com



- UnitIV-Quantum Mechanics
At the end of the 19th century, the puzzle regarding blackbody radiation was that the theory regarding how
hot objects radiate energy predicted that an infinite amount of energy is emitted at small wavelengths, which
clearly makes no sense from the perspective of energy conservation. Because small wavelengths correspond
to the ultraviolet end of the spectrum, this puzzle was known as the ultraviolet catastrophe. Figure 27.1
shows the issue, comparing the theoretical predictions to the actual spectrum for an object at a temperature
of 5000 K. There is clearly a substantial disagreement between the curves

- ]
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Matter wave:

According to Louis de-Broglie every moving matter particle is surrounded by a wave whose wavelength
depends up on the mass of the particle and its velocity. These waves are known as matter wave or de-

Broglie waves.

Wavelength of the de-Broglie wave:
Consider a photon whose energy is givenby E = hlﬁ—c = [ ¢ =il (1)

Where his Plank’s constén23 X ~$0) sec, 9 is the frequency and A is the wavelength of photon.

Now by Einstein’s mass energy relation

E = MTMC% e (2)
By equation (1) and (2)
hc
mc? — —
A
h
A = —
mc
h
A = = Wherep = 7
p
In place of the photon a material particle of mass m is moving with velocity v then
h
A = e ——— (3)
mv

(i)

Now we know that the kinetic energy of the material particle of mass m moving with velocity 9 is given by-

E = % mvz
E = m2p?
2m
2
p
E = i = 7N
o [+ p
p = 2mE
So by equation (3)
h
1 =
2mE

(ii)
According to kinetic theory of gasses the average kinetic energy of the material particle is given by E =

% KT whereK = 1.38 3 JJ& i.e. Boltzmann constant
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Lov? = 2kT
2
m2v? = 3mKT
P? = 3mKT E -mc?
p = 3mKT
So by equation (3)
h
A = e (4)
3mKT

Group or Envelope of the wave:
When a mass particle moves with some velocity than it emits the matter waves, those waves interacts each

other and where there they interfere constructively they form an envelope around the particle which is

known as wave group or simply envelope.

Particle

Figure(2): Formation of the wave packet

Group velocity:
Group velocity of a wave is the velocity with which the overall shape of the wave’s amplitudes (modulation

or envelope) of the wave propagates through space. It is denoted by v.

Phase velocity:
The phase velocity of a wave is the rate at which the phase or the wave propagates in the space. It is

denoted by vy,.

Expression for Group velocity and phase velocity:
Let us suppose that the wave group arises from the combination of two waves that have some amplitude A

but differ by an amount Aw in angular frequency and an mount Ak in wave number.

yi = A cdsot — Dkx (1)
y, = A cdfwt + Yo €k + Ak (2)
By the principle of superposition
Page 8
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= Y1+ (3)
= Al[cos(wt — )kix coffwt + Yw €tk + )AK]

Using the identity

A +\B —\ B
cos A + cos B =—22—>ccr3)s )

And cos(—0) = cos 6

(wt — et {wt + Awt — kx — Ak (wt — )ex {wt + Awt — kx
2 2
2wt — 2kx + Awt — Akx wt — kx — ot — Awt + |k
2 2
t+Awt—2kx—Ak —Awt + Ak
A BZa):a) X x 4 - g) X
2 2
A + B(Zw;Aw)t—(ZlHAk)x 4 - B_= Awt — Akx
2 2
[%(Zw + Yo €2k + )A? Awt — ?](x
y = A €65 . co%i
2 2
Let2w + Aw =ndZk + Ak = 2k
So we have

y = 24 [cos Q(wtz— ﬁkx cosAa{t _ ﬁTx

\ 2
= _ _ Awf Ak
y = 24 [cos(wt Ykx cos- (t > x)] ........................ (4)
This is the resultant wave equation of superposition of two waves having the amplitude
2A cosATw(t %x) and phase cos(wt — )kahere w and k are mean values of angular frequency and

prapogation constant of the wave.

Phase velocity:
Since phase wt — = constant
Differentiating with respect to t we get

wdt — k= 0

dx
—1 = —
But v, o
dx w
@ -k phase
velocity
I —
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= _ &x_ o
vy = TE T} s, (5)
Group Velocity:
A Ak _
= =dt —dx = 0
2 2
A — Ak
= =dt = =dx
2 2
= Ao = dx
Ak dt
So the group velocity
— dx dw
v, = #X_atw
g DL T R s (6)

e ———————
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Relation between Group velocity and phase velocity

1. For dispersive and non-dispersive medium:

But by equation (5) i.e. v, = % = w = kv

Putting into equation (6) we get

= v, = d(kvp)
dk
=3 dvp
Vg = B T
g = W dk
— 24710 dvy,
v, =
g d %12
= o = b q)#
g P T aN2rd(1TY)
= o - +1>( dv,
g - V\(=21-2). da
—t
D, = — 71_19
9T T T
Different cases:
1) If— dv” De. if the phase velocity does not depends on the wavelength then v, = 7 such a medium is

called the non dispersive medium.
d
2) If % # De.if it has positive values then v, < 7 then such a medium is called the dispersive
medium.

2. Relativistic particle:
Let us consider a de-Broglie wave associated with a moving particle of rest mass my and velocity v, then the

w and k will be given by

= w = 2
= w _ 2mmc? .. mc?
= - SV =
2mc? m,
= w = h 1 O (8)
1 =
c
And
= — ¢
e = 1
= 2n o
k=@ o
muv.
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Now phase velocity v, = %

So

dw

Now group velocity v, = Tk

The expression can be written as

Vg

mo

................................................... 9) vom =
h/l—Z—Z \/1—1;—;

2mc? my h _1;_2
h \/2 2mmqv
Z
2
T ettereereesreeeeeiee st eeeesste st eeree st e easeesbestesreserasnntesns (10)
v
(@)
........................................................................ (12)

(@)

In order to find the value of v; we have to solve the following terms-

= [ 2 !
dw d |2mc my | . .
dv dv| n v2| [By equation (8)]
I 1 =]
= _1
2
do 2mc*mg d v?
= _3
dw 2mcimy 1 2\2  /2v
dv h (‘E) L= (7)
= d 2 5 _3
@ 2
— = e (%) <1 ”_> ............................................. (12)
dv h CZ CZ
Again
dk d | 2mrmgyv |
- @ = @ 2
v hll 2
c
| 1
dk 2mm | d v
: I —
dv h  ldv 2
1 =
c
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1
v2 1 v?\ 2 2v |
= dk  _ 2mmg 1 = 1 _2(11' ?) ' (?)
dv h 1 v2 |
< J
2 2
1 Loy
c c 12
_ dk _ 2mm, 1 =
dv h ( 172)
1 =
c
[ 2 w2 ]
_ ak  2omg | 1 @t |
dv h'|1_2v1v2|
l c? FJ
o\
2 1 —°\w?2
= dk_f2mmo (L IR (13)
dv h c?
Putting the value from (13) and (14) into (11) we get
[ 2 25
2mcmg (v ve\ 2
2 () (1 c_2>
= Ug = 3
2mm, (1 v_z)_7
h c?
Group velocity Vg S U st s s (14)
By equation (10) we have
Vp. 1= c?
By equation (14)i.e.v; = v
So Uy P = 2
3. Non-Relativistic free Particle:
According to the de-Broglie hypothesis
N
A = ng
Now the total energy
1
E = Emvg ................................................................................. (1)
And E' = RO st st st (2)
By equation (1) and (2)
h9 = %mvj
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2

mv
h9 = —9
2h
And phase velocity v, = 94
So we have
mv2 h
Up = —I x —
2h mvg
v
_ Y
v, =
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Uncertainty Principle:

It is impossible to determine the exact position and momentum of a particle simultaneously.

Let us consider a particle surrounded by a wave group of de-Broglie wave as shown in the figure

Particle

Figure(3): particle surrounded by a wave packet

Let us consider two such waves of angular frequency w; and w, and prapogation constant k; and k,

traviling along the same direction are-

According to the principal of superposition

Y o= Pt @

= A sin(@ —xk + A sin(w-,xk

w

—1xk + tw —yx

( —1xk —ytw +,x

Y
Y = Alsin(wt —ixk+
Y

= A]|2 sinlf

|

] ] Cc +\D C D
sin ¢ 4+ sin DT) sm:e%(:)

+
! Q’t

1,D=2Asin\2

=

http://www.rgpvonline.com
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+
Let W :wl p )
2
ki+ Xk
And = T st
k= > 3)
And Aw =,® @
And Ak =;-+% Xk ),
So we have
. Aw Ak
Yy = 24 [sm(wt — )chcosT(t Tx)] .................................................................. (4)

The resultant wave is plotted in the figure (4). The position of the particle cannot be given with certainty it is
somewhere between the one node and the next node. So the error in the measurement of the position of

the particle is therefore equal to the distance between these two nodes.

Node Node

\ AT, AT nm\l

g f\ s >

%) V) V&
AT AT AT A

- A >

Figure(4): The envelope created by the superposition of two waves.

The node is formed when

Ak
cos %t TX) = 0 “ cos A = 02n:>+);§1 =
Aw Ak T
¢y = (2 3
= St X (2n +)2

Thus x4 and x, represents the positions of two successive nodes, then at any instant t, we get-

Aw Ak s
Tt 7)(1 = (2n +)El ......................................................... (5)
Aw Ak T,
Tt sz = (2n +)53 ......................................................... (6)

Now on subtracting (5) from (6) we get

Aw Ak Aw k T 3T T T
Tt 7)(2—71_' -E—xl = 27’1.;+7— 21‘5—5
Ak
7(351— N =
AR AX = 2 s (7)
2T
But k _l_m
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Again/lm=—=§
So ZnA{%} Ax = 2m
)
1
Ap. A= h
Whereh =
Ap. Ao = h
h/2n

Energy and time uncertainty principle:
Let Ax be the width of the wave packet moving along the x-axis, let v, be the group velocity of the wave

packet and v, is the particle velocity along x-axis. Now if the wave packet moves through Ax in At time.

Since Ax is the uncertainty in the x-coordinates of the particle and At is the uncertainty in the time i.e. given

by
Ax
At = —
Vg
Ax = Vgo Dl e e (1)

If the rest mass of the particle is mg then the kinetic energy is given by

E = ~myv2
2
E _ L fv?
Zmo. x
E - L 2
= Zme (OVx)
E _ 1
= oo D
E o PE ettt
= o (2)

If Ap,, and AE are the uncetainity in the momentum and energy respectively, then differentiating (2) we get

_ 2pxApx
AE = SR
AE _ PxAPx
=
APx _ moAE
- Px
Butpy = By
So Y JE Y (3)
MoVyx

Now by(1) and (3)

Ax. Ap = v, Afv#x AE
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Butv, = ,s0 we have

AxAp, = At. AE (4)
We know that

AXAD, = R i (5)
So by (4) and (5)

At. AE > h
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Application of uncertainty Principle:
Determination of the position of a particle with the help of a microscope:

Let us consider the case of the measurement of the position of an electron is determined. For this the
electron is illuminated with light (photon). Now the smallest distance between the two points that can be

resolved by microscope is given by

FAY O SURN 1
2 sin @

From the above equation it is clear that for exactness of position determination improves with a decrease in
the wavelength (1) of liaght. Let us imagine that we are using a (y — rawicroscope of angular

aperture26.

Microscope

" electron
3 N

Recoiled electron

Figure(5): microscope
In order to observe the electron, it is necessary that at least one photon must strike the electron and

scattered inside the microscope. The scattered photon can enter in the field of view +6 to - 8s shown in

the figure.

Rough

9
1
<)
ol
1
@

-psin® +psind mc? =

Figure(6): Scattering of an photon by an electron
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The momentum (p) of the scattered photon is (%) then the momentum along the x-axis is (- p sinané)

(+p sin . But when the photon of wavelength A’ collied to the electron then this photon recoile the
electron by giving some momentum to it.

Now the uncertainty in the momentum transfer to the electron willbe Ap  #fp +,]p-[p —xlp

Ap = (%+%sin 9) ;—,—gsin 0)

Ap = %sin O e (2)
By equation (1) and (2)
A 2h sin 6
dp. A = 2 smxe y
Ap. A= h
h x
Ap. A > 3 Where h >

Diffraction of electron beam by a single slit:
Suppose a narrow beam of electron passes through a narrow single slit and produces a diffraction on the

screen as shown in figure.

Single Slit

Diffraction Pattern Qereen
due to sigle slit

Figure(7): Diffraction pattern of electron beam by single slit

But the theory of Fraunhofer’s diffraction at a single slit (2d sin 68 = thierfityt minima is given by
20y SIN = & e s (1)

In producing the diffraction pattern on the screen, all the electrons have passed through the slits but we
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can-not say definitely at what place of the slit. Hence the uncertainty in determining the position of electron

is equal to the width of the slit (Ay) then by equation (1)

A

Ay m T (2)

Initially the electrons are moving x-axis and hence they have no component of momentum along y-axis.
After diffraction on the slit, they are deviated from their initial path to form the pattern. Now they have a

componentp sin Af.y component of momentum may be anywhere between (p sin @y (- p sin

Hance the uncertainty in y component is

Apy = p sin 8 — (—p sin 0)
Ap, = 2p sin 6
Ap, = 2 20 sin [ p %]: .............................. (3)
By equation (2) and (3)
Ay. Ap = h
Ay. Ap > g
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Compton Scattering:

When a beam of monochromatic radiation of sharply define frequency incident on materials of low atomic
number, the rays suffers a change in frequency on scattering. This scattered beam contains two beams one
having lower frequency or greater wavelength other having the same frequency or wavelength.

The radiation of unchanged frequency in the scattered beam is known as unmodified radiation while the
radiation of lower frequency or slightly higher wavelength is called a modified radiation. This phenomenon is

known as Compton effect.

Energy=hv’
Momentum=hv’/c

Energy=hv A :8
Momentum=huv/c h?u cosO

-] F,
hv’sing
C

Energy=m c’ mv cos}

Momentum=0

-mv sing Energy=mc>

Momentum=mv

Figure(8): Compton Scattering

The energy and momentum

S.N. Quantity Before collision After collision
Uil (Where 9 is the frequency of ho'
1. Momentum of radiation | ¢ -
radiation) ¢
E = (Whered isthe frequency of
2. Energy of radiation E = 'hd
radiation)
3. Momentum of electron | 0 mv
E = y0h(Wheremgistherestmassof |E = 3{Where misthe
4, Energy of electron
the electron) moving mass of the electron)

By the principle of the conservation of momentum along and perpendicular to the direction of the incidence,
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we get
In x-direction

momentum before collision

mometum after collision
hor

h9 + = —cos O F+ MU Clorvrrerercese e (1)
In y-direction
0+=h719'sin9—mv Si veerererrer e (2)
By equation (1)
mvc cos = h9 — "OS 0 s (3)
By equation (2)
mvc sin = RhO'sin 0 s (4)
Squaring equation (3) and (4) then adding we get
m2v2c?(sin?¢p + tgs) = (W9 — 'kOs ¥ + (h9'sin ¥
m?v2c? = h29%2+ W'?cos?6 — B cos 6 %9 sin®6
m?v2c? = p29%2+ R9'%(cos? + S0 — 299 cos 6
m2v2c¢? = p292 4+ 9'° — 99 cos 6
R292 + 392 — B9 cos 6 = MEVECE e (5)
Now by conservation of energy
Energy before collision = Energy after collision
h9 4+ o0 = hv'+ nc e (6)
h9 + gah— Hv = mc?
h9 — 'm gr? = mc?
Squaring both side
[h9 — 'R gr?]? = mict
Asweknowthat(a + b))%+ dat+ D+ %+ 2ab + 2bc + 2ca
S0 (a — b)*+= &+ P+ %— 2ab — 2bc + 2ca
h292+ 37+ frt— A9 — A'mec? + 2m9ge? = mict
R292 + 9% — 299"+ Bri4+ 20 —DI grd = MECY . (7)
Subtracting equation (5) from (7) we get
h292 + W' — 99+ frt+ A0 -9 gt — PP+ WP - - Y
2h%99' cos 6 = mics A
2924+ - B9+ Tt W9 —N)O grio WEo W Y
= m2c%(c®*- Y
+ 2999’ cos 6
—h2. 201 — cOs+ 620 —ryc?+ frt = mic?(c?P - Y

http://www.rgpvonline.com
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But m =m°2
=
So m? = mgz
mic?
mt =T
So
2 . _ i 2 4 _ _mic* oo o
h?. 2941 cos+ 6 20 Yhoc? + frt = @€ (c o)
—2h%299'(1 — cOst B2 —"oc®+ frt = mict
—2h%299'(1 — cOst 6200 —"yc? = 0
2h(® ="mgc® = 2h%99'(1 — cos 6O
P _
® =Nt = Phmec? 1 cos 6
(w-9) _ h _
5o = mocz(l cos 0)
9 9 h _
5o "2 = mocz(l cos 0)
1 1 h
53 = m0C2(1 = COS e (8)
Multiplying by ¢ both side
c c hc
575 = m002(1 — cos 6)
h
M-, = m—oc(l — COS € e (9)
h
AL = m—oc(l — cos 0)
h 2 (0
AA = m—ocz SIZI](E)
_ 2R 2(8
AL = mocsm (2) .............................. (10)

Where AA is the change in the wavelength

Equation (10) shows that

1)

2)

If6 = 0 = Ag. therels no scattering along the direction of incidence.
-34 o
fo Z= M —==—220 ____ (24264 this wavelength is known as Compton
2 mocC 9X107°1Xx3x10

wavelength and it is a constant quantity.
fe6 = n = ﬁgzlz =0.4852 Ao the change in the wavelength waries in accordance to the
0

scattering angle 8 and this is shown in figure.
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h

mc

AL

mec

Lotealaaiealestaaleanaalestalennad 3 X 31XS
0 45 90 135 180

Angle 6

Figure(9): Graph between angle of incidence and wavelength
Importance of Compton effect:
1) It provides the evidence of particle nature of the electromagnetic radiation.

2) This verifies the Plank’s quantum hypothesis.

3) This provides an indirect verification of the following relation m =m°2andE = nc
Direction of the recoil electron:
We know that
mvc coS = hO — "KROS 0 s (3)
muvc sin = h9'SID 8 e (4)
Dividing (4) by (3) we get
h9'sin 6
tan ¢ = ——M
hd — 'ks 6
9'sin 6
tan ¢ = ——
9 —'cOs 6
Again by equation (8) i.e.
1 1 h
——— = — (1 - cos 6)
9 9 mgc
1 1+ Jsi 2(9)
9 9 mgc st 2
Multiplying by 9 we get
hd9 0
Yoo -|—25in2<—)
9’ mgc 2
h9 ., (0
i, _ 1 -Jr—nO—CZSln (7)
9 9
9
9 =

Then by equation (11) and (12) we have
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9 sin 6
1 + «a 22(%)
[ Y cos 6O
T
9 sin 6
1 + « 2(%)
cos 6
l Lt o)
sin 6
1 + «a 22(%)
1 + a%(%b — cob 0
1 + « 22(%9
sin 8

1 + a%(%) — cos 6

sin @

(1 — cos 08) -I-Z(%) 2sin

2 snd) B

2 shlz) + o)
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tan ¢

tan ¢ = cot %)

tan ¢ = W
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Wave function and its properties:

We know that height of the water surface varies periodically in water waves, the pressure of gas varies
periodically in sound waves and the electric field and magnetic field varies periodically in light waves,
similarly the quantities which varies periodically in case of matter waves is called the wave function. The
quantity whose variations make up the matter waves. This is represented by . This has no direct physical
significance and is not an observed quantity. However the value of wave function is related to the probability
of finding the particle at a given place at a given time, wave function 1 is a complex quantity i.e.
Y = A + iB
Conjugate of Y is

And
Yy =yl = A+ B

||? at a time at a particular place is the probability of finding the particle there at that time and is known as

probability density || = i)

. X
Let the wave function v is specified in x direction by the wave equationy = _A“e’(t_i)
Wherew = Z2anlv = 941
So

‘(/) = Ae—znﬁi(t—%)

Vo= 4o 2m(0F) e (1)
ASE = hd And 1 =§
h 27t.i
E =. 2md9  ——T
2T 14
1 L
E = 2mhd
1_r
A 2mh
Putting these values in (1) we get
‘(p = Ae—ZTEi(%t—%x)
Vo= AemiEEPO (2)

This is the wave equation for a free particle.

Properties of wave function:
1) It must be finite everywhere: if Y is infinite at a particular point, then it would mean an infinitely
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large probability of finding the particle at that point, which is impossible. Hence Y must have a finite
or zero values at any point.
2) It must be single valued: if i) has more than one value at any point, it means that there is more than

one values of probability of finding the particle at that point, which is impossible.

. . . d? - - .
3) It must be continuous: For Schrodinger equation Tz Must be finite everywhere. This is possible only

d . - . L
where % has no discontinuity at any boundary where potential changes. This implies that y too

must be continuous across a boundary.

4) 1 must be normalised: Y must be normalised, which means thaty must to be zero asx — &+
y — ixo0 — dmworder that f|1,1)|2 dv over all space be finite constant.
If fj;o|ll)|2 dv = Otheparticle does not exists but 1|2 over all space must be finite i.e. the body
exits somewhere it

f;lz|1/i|2 dv = 0, oo, commex are not possible.

5) Normalization:f_J::oll,bl2 dv = 1
As ||? = yip= probability density(P)
6) Probability between the limits x; and x,: This is given by
Py, = fj;ollplz dx (one dimensional)
7) Expected values: To correlate experiment and theory we define the expectation values of any

parameter

oy S b0 dx [Ty xy dx
oW dx  [T7wr  da

If 1 is a normalised wave function then

(x) = r|¢|2 d« = 1

Orthonormal and Orthogonal wave function:
For two wave function 1, (x) and ¥, (x) if the condition f; Y5 ()Y, (x)dx = exists then they are said to

400
f W2 dx = 1

So

be orthogonal wave function. Here 15 (x) is the complex conjugate of ¥, (x).

The normalized wave function are defined by

b
f YYD de = 1
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The wave function satisfying both the conditions of normalisation and orthogonally said to be orthonormal.

These two conditions simultaneously can be written as

= form = 1

b
f WP (T = oy =

Q

form =+ 1
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Operator:

Operator O is a mathematical rule which may applied to a function f(x) which changes the function in to an
other function g(x).

So an operator is a rule by means of which from a given function, we can find another function for example:

Eeaxz a®

So an operator tells us that what operation to carry out on the quantity that follows it.

Energy Operator:
We know that the wave function is given as-

Y = Ae—%(Et—px)

Differentiating partially with respect to t we get

W _ L py
ac — T~ Aden
oy iE
E
h o
E = _—__T
v i ot
Hence energy operator
. oY
ot

Momentum Operator:
Again by wave function i.e.

v = Ae—if'l(Et—px)
Differentiating equation with respect to x we get
W _ P —tEepy
9x ? Ae h
w _ W
ox h
hoy
i Ox
py —ih—
p —ih—

Note: 7 9x = E@D

Here 1y is called an eigan function of the operator —ih;—x and E are called the corresponding energy eigan

values.
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Schrodinger’s wave equation:

Schrodinger’s wave equations are the fundamental equations of quantum mechanics in the same sense as
the Newton’s second equation of motion of classical mechanics.

It is the differential form of de-Broglie wave associated with a particle and describes the motion of particle.

(i) One Dimensional

L0 h? 0%
§ ot = zmoz T VY
Time dependent (ii) Two Dimensional
. a 2 62 62
Schrodinger wave in [ ¢+ Y ——
equation at ox? = dy?

(iii) Three Dimensional
— ap  h? (%Y 9%y 02
0% _ AL AT
ot  2m\dx? 0dy? 0dy?
Schrodinger

wave
equation (i) One Dimensional
0%y 2m
( o2 w2 E ) ¥= W0

S ||) Two Dimensional

2 2
01/) 6ll)+>

equation \ ax?

—5(E D) =p0

(ii) Three Dimensional

62111 azzp azzp 2m _
axz azz (E _) % _Itb 0
Figure(10): Schrodinger wave equations
Schrodinger’s time dependent wave equation in 1-dimentional form:
Let us assume that the 1 for a particle moving freely in the positive x-direction is
W o= ae i EEPO (1)
Now the total energy
E = KE + (dotentialenergy) — .ovvevevnecseeneee (2)
2
And we know that the kinetic energy is related with the momentum as KE =:—m
So the equation (2) in terms of wave function ¥, can be written as
(P
Bp = () 9 + 1 e (3)

As we know that the energy and momentum operators are given by EY = %Land Y =%—

Putting the values in equation (3) we get
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dy 1 (hd\*

ih— = —(=— %
dt 2m (i dx) v+
dy h? d%y

ih— - —— T 172 SRSV (4)
dt 2m dx? v

Schrodinger’s time independent wave equation in 3-dimentional form:
Ldyp _ n* (d? | d? | d?
i = g Getaptas) ¥t VY

. L 2 d? d?
But the Laplacian operator is given as V2= ;% + o7 + )

dz?

So the above equation can be written as-

LAy n? o
lfldt = %th F Ve s (5)

Schrodinger’s time independent wave equation in 1-dimention:
Again from wave function-

= Ae —%(Et—px)

Y

b = Ae REt X

Y = AeiP*. GEt

Y = l,l)oe_%Et Where 1, = Aié)x
Now differentiating partially with respect to t we get

D=y, 0T e (7)

Now differentiating partially with respect to x we get

(4l o —Lpt
x = x ¢’
- %y Py —Lpe
Again L R0 BT errreneesrese e e 8
& ox2 - ox2 ()

2
Putting the value from (7) and (8) into equation (5) we get i.e. ih% =2h—m Vi o+ Vy

Epoet® = W[5 vy
EYo = gnget VO
Eyo—Vy, — % %
(E ¥y, - % a;io
ZE WY, = «'fa_w
%_%(E )y, = 0 e (10)
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Schrodinger’s time independent wave equation in 3-dimention form:

%Yo | %Yo | %Yo\ 2m _ =
(6x2 + ay? + 622) h2 (E [{))l O

Vi —=F(E ¥y, = 0

2 2 2
2_ (9 4 907 a_)
Where V4= (axz + 57 + o0
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Application of Schrodinger’s wave equation:
Energy level and wave function of a particle enclosed in one dimensional box of infinite height:

Let us consider the case of a particle of mass m moving along x-axis between two rigid walls Aand Batx =

0and x =.The potential energy V of the particle is given as

Ofor0 < x < L

oforx < 0O0andx = L

Within the box, the Schrodinger wave equation is given by

9° 2
a_;f_h_T Ey = 0 [ V =i (1)
2mE
Let k? = 7 (2)
62
a_;f_ ) = 0 s (3)

This is a second order differential equation and its solution is given by
Y = A sin kx 4+ B C v (4)
Where A and B are constants, the value of these constants can be calculated by the boundary conditions. By
first boundary conditionifx = 0 = Y = 0
Then by equation (4) we get
0 = A sin kO + B cos kO
= B = 0
For second boundary conditiony) = atlx = thkn by equation (4)

0 = A sin kL. + 0. cos kL
= A sin = 0
ButA #sdksin kL = 0 = kL = non(n = 0123 .. .. .. )
2.2
As we know that k? = nL7zr ........................................................ (5)
By equation (2) and (5)
2mE _ n2m?
nz2 12

For representing the nt"* energy level replacing E BY E,, we have

2mE, _ nPn?
h2 - 12
2.2 2
nem n
E = - ¥—
n L2 2m
E _ n?m? h?
n L2 42 2m
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——————————————————————————————— —————————————

E, = BB e (6)

8mlL?

It is clear from expression (6) that inside an infinitely deep potential well, the particle can have only discrete

set of energy i.e. the energy of the particle is quantised. The discreet energies are given by

2
B, = 8:1L2
E, = ;:;: 4
By = = o
= R e

The constant A of equation (4) can be obtained by applying the normalization condition i.e.
x=L
JoollPdx - 1
fOLlA sin |kdx — 1
A? foLsin2 kx dr — 1
2 L (1-cos 2k
e fr(E 2y g

A;fOL(l — cos)dkx = 1
A2 L _ fsin Zk}c]‘
2 [{x}o { 2k 0] = 1

A? 1 . _
7[(L - O)Z—késm 2kL - %n = 1

A? 1 2nm . 2nm
—_ L _ . _L — Slil — X k =
z[ 2% G 1 L
2
%[L 2_1k(0 — ]( = 1 w sin 2nm
AZ
—L =
> 1
A _ % ................................................................ (7)
Now the wave function will be given by
Y = \Esinﬂx n = 123,
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