Unit 5: Wave Optics

Unit-5

Optics

Syllabus:

Interference, division of amplitude & division of wave f
double slit experiment, thin film interference, Newton Ring Experiment.
Diffraction: Difference between interference and diffraction, types of
diffraction, single slit, double slit & n-slit diffraction, Resolving power of
grating.
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Unit 5: Wave Optics

Interface:

When two waves of approximately same amplitude and frequency going in the same direction in the same
medium, generally coming from the same source, then the intensity of light at different places will be
different. This phenomenon of light is known as interference.

Interference can be obtained by two ways:

Interference may be of two types:

Interfecence
By the division of the wavefront By the division of the amplitude
1. Youns double slit experiment 1. Newton's ring
2. Fresenl's biprism 2. micleson's interferometer

Figure(1): Interference Hierarchy tree

Interfecence

Counstructive interference Distructive interferenc

Figure(2): types of Interference

Constructive Interference:
Locus of all the points where the crest of one wave falls on the crest or the through of the one wave falls on

the through of the other, the resultant amplitude is the sum of the individual waves. So the constructive

interference takes place at those points and the intensity at these points will be maximum.
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Figure(3): Constant Phase difference Figure(4): Waves in same phase

Displacement
Displacement
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Unit 5: Wave Optics

Destructive Interference:
Locus of the points where the crest of one wave falls on the through of the other wave the resultant intensity

become the difference of the waves and at these places the intensity become minimum. At these points

destructive interference will take place.

IAAAAAATA
\/\/\/“"e

Figure(5): Waves opposite phase

Displacement

Coherent sources:

Two sources are said to be the coherent if they emit continuous light waves of the exactly same
frequency/wavelength, nearly same amplitude and having sharply define phase difference that remains
constant with the time.

In practice it is impossible to have two independent coherent sources. For experimental purpose virtual

sources formed by a single source and acts as coherent sources.
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[ Maxmum
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Figure(6): Young’s Double Slit experiment
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Figure(8): Fresnel double mirror Figure(9): Fresnel’s bi-prism
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Unit 5: Wave Optics

M,

AY

M,

Figure(10): Michelson’s Interferometer

Relation between phase difference and path difference:

The difference between optical paths of two rays
which are in constant phase difference with each

other is known as the path difference.

Suppose for a path difference A1 the phase ¢=27
difference is ¢
So O
O = 2M e, (2)
T (2)
< A:)\/ L.
by equation (1) and (2)
¢ 2m
A A
2n
¢ =

Figure(11): Phase and path difference

Principal of superposition:

When two or more waves reaches at the same point of a medium then the displacement at that point

becomes the vector sum of displacement produced by the individual waves.
i.e.

Y =1 ‘|¥ 2Y+ 3Y
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Unit 5: Wave Optics

Mathematical treatment of interference:

Let two waves of amplitude a; and a, and angular frequency w super imposes and re-unit at a point after
traveling different path S; P and S, P,let the phase difference of these two waves is ¢
If y; and y, are two waves then
vy, = asin(fwt) e @9)
y, = aysinflwt + ¢ e (2)

By the principle of superposition of waves , the resultant waves will be

y = nty
y = asin wt FsiMwt + ¢)
sin(A + B) = sin A cos B + cos A sin B
y = asin wt Hsim wt cos ¢ + cos wi
Yy = aqsin wt 4sina wt cos @cos @t sin
y = sin wt M gcos ¢] + cosysit {d ... (3)
Let A cos = a+ gcos ¢ 4)
A sin = aysin ¢ L. (5)
by the equation (3), (49nd (5) we get-
y = sin wt . A cos 8 + cos wt . A
y = A[sin wt cos 6 + cos wt sin 0]
y = A sinlwt + 6) (6)
Here A and 6 are constant and can be given by equation (4) and (5) as
(a; + gcos P+ (apsin P = A%cos?6 +2%sin?6
a? + Zicos’¢p + ,2gcos ¢ 4sint¢p = A*[cos?O + i
a? + Z(cos’¢p + i) + ,2gcos ¢ = A?*[cos?O + i
(a?+a3) + ,2gcos € = A?
cOsp + B = 1
A? = ai+di+ 2mycos @

Now the resultant intensity at any point is given as I oc? fdr simplicity let
I = A?
So I = ai+di+ 2m,cos ¢

Condition for maxima:

For maximum intensity
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Unit 5: Wave Optics

then ¢ = 2nm
This is the condition for constructive interference in terms of phase(¢)

Then by equation by (6)

I = a% +a%+ 21(112
I = (a;+ 0?
So the path difference
A
= —X
A = =X @
A X 2
A = o nm
A = ni
) A
A = le
l.e. the path difference is the even

multiple of %, this is the condition of 0 p 1': - gn sn2 315 772/_’ 4n
constructive interference in terms of
path difference (A)

Figure(12): cosine curve

Condition for the minima:
Again the intensity will be minimum when-

cos ¢ = — 1
then¢p = (2n + Um
This is the condition for destructive interference in terms of phase(¢)
Then by equation (6)
I = af+ 5~ 2m

I = (a— 2°
And path difference

A
A = —x

21 ¢

A 2n + 1
A = 27‘[(n m

A

i.e. the odd multiple of the half wavelength, this is the condition of destructive interference in terms of path
difference (A)

Now the average Intensity:
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Unit 5: Wave Optics

Jy " de

M@+ Bt 2mycos ¢)dx
l.w = fOand)

[aip +5dn + hgsin §”
lov = [p12"
. _ @2+ 2. 2m
av 21
I, = %+ &
- I+ 2

The average intensity is the average of the maximum and minimum intensities. It can be given by-
Now ifa; = = then,

2a?

Iav

The average intensity is equal to the sum of the separate intensities. Whatever the intensity disappears at the
minima is actually appears at the maxima. Thus there is no violation of the law of conservation of energy in

the phenomena of interference.

Condition for the sustained interference of light.

Two sources of light must be coherent.
Difference in the amplitudes of the two waves must be small.

Sources should be narrow or point source.

If the interfering waves are polarised then the plane of polarisation must be same.

1
2
3
4. The separation between two sources should as small as possible.
5
6. The sources should be monochromatic.

7

Interfering waves from two coherent sources of light should travel in the same direction.

L ———————————————————————————————————————————————————————————
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Unit 5: Wave Optics

Fringe width:

Consider a narrow monochromatic source S and two parallel narrow slits S; and S, very close together and
equidistance from S. Let d be the distance between two slits §; and S, and D be the distance of screen from
coherent source. The path difference between the rays reaching from S; and S, to O is zero so the point O
has maximum intensity.

Considering a point P at a distance x from O. The wave reaches at the point P from S; and S, hence PQ =

(x %)and PR = (3%)+

Figure(13): Measurement of fringe width

d\* d\?
s = [ (H] o (Y
2 1 [D + x2 3 x2
5 d? d 5 d? d
(S, +,Py(S,P — P — |D?+ %c+T+ 2x5—1D% + %c+7— 2%
d? d d? d
SyP +,P¥(S,P —P§ _ D2 — —— b— Z——
(S2 1P3(S; 1Py = D+%c+4+ 2x2. D %c4+ 2):2—.
(S,P +,P¥(S,p — Py - 2dx
S,P PS 2dx
2 ! = (5P +.P§

Now from the figure

If the point P is very close to point O

SO SzP _1PS = and Szp z1135 = D

A - 2dx
(b +)D
) 2
2D
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Unit 5: Wave Optics

A
1. Bright Fringes: For bright fringes the path difference is the integer multiple of the > i.e.

xd ) A
p = “*3
ﬂ — ni
D
nAD
X = @ —
d

This equation gives the distance of the bright fringes from the point 0. Hence for the nt" bright fringe

(replacing x by x,)

niAD
o= T
For next bright fringe
(n +)AD
Xn+1 = 7

Therefor the distance between any two consecutive bright fringes

(n +)AD nAD
d d
AD

b= 7

Xn+1 — X =

A
2. Dark Fringes: For dark fringes the path difference is an odd multiple of E

So dx ) 4 A
p = @n +)3
x - (2n +)AD

2d

Hence the n" dark fringe (replacing x by x;,)

(2n +)AD
X, = —
2d
And for the (n  +)dark fringe
N [2(n +)4 8D
n+1 = 2d
N (2n +)AP
n+1 = >d

Therefore the distance between two consecutive dark fringes

2n +)AB (2n +)AD
2d 2d

Xn+1 = nf =
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Unit 5: Wave Optics

AD
Xne1 — W = ﬁ[zn + 3 — Pn - 1
AD
Xn+1 — ¥ = 2d " 2
, AD
B = 7

As the distance between two consecutive bright or dark fringes is same and is called fringe width and denoted

by .

A
‘B =

d
i The fringe width is directly proportional to the wavelength of the light usedi.e. § « A
ii. The fringe width is directly proportional to the distance of the slits from the screeni.e. f

iii. The fringe width is inversely proportional to the distance between the slitsi.e. § %

Shape of the interference fringes:

Actually these interfering fringes are hyperbolic in shape, but the eccentricity of fringes is quite large and
hence these hyperbolic fringes appear more or less strength lines.

Angular Fringe Width:

The angular fringe width is defined as the angular
Xn+l
separation between consecutive or dark fringes and

is denoted by 4. 0 Xn

« D »

Figure (14): Angular fringe width

| 3 arc
angie = Ladius
0 = Opy1—
Xn+1  Xn
& = "D D
(xn+1 - 1?@
6 = D
B
6 = 7
A
But ,3 :E
SO 0 — &
D
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Unit 5: Wave Optics

Fresnel’'s Biprism:

The prism is a device to obtain two coherent sources
to produce sustained interference.

Fresnel used a biprism to show the phenomenon of
interference. A biprism is usually a combination of
two prisms placed base to base. In fact this
combination is obtained from an optically plane glass
plate by proper grinding and polishing. The obtuse
angle of the prism is about 179° and other angles are
about 30’each.

To show the phenomenon of interference a
horizontal section of the apparatus is shown in the
figure.

Measurement of d

Figure(15): Fresnel’s Biprism

Figure(16): Measurement of d by displacement of lens

A bi-convex lens of short focal length is mounted between the bi-prism P and the eyepiece by moving the
lens along length of bench, two positions Liand L, are obtained such as for which the image of sources

formed at the same place.

For L, position % = Z—i ............ D
For L, position % = Z—z
% = lvl—i [+ y= uandu, = v e (2)
So on multiplying (1) & (2) we get
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(d)?
(d)?

U1 U
u; v
dqd,

Jdid,

Unit 5: Wave Optics
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Unit 5: Wave Optics

Determination of the thickness of a thin sheet of
transparent material:

s

Distance travelled by the light in air= P

Figure(17): Shift in fringes on introducing the thin film

— (by the velocity c)

Distance travelled by the light in film= by the velocity c,)

Time taken by the light to cover this distance

SiP — tt
T +—
c o
C Cc
But u = then ¢4 =
So we have
S;P — tt
T
"
SiP — wt
T L LB
c c
T S4P — t + ut
c
T SiP+ tlw — 1
c
Thus the path S;to P i. e. {RYis eqivelentto anairpathS;P + (0 — 1t
Now the path difference at
A path S,P (in air) — path,® (in air)
A SP —4BS + (n — 1)t]
A (S2P —P§— (u — 1t
BUtS,P —,PS =
So we have A %d_ w — Dt - .o (1

http://www.rgpvonline.com
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Unit 5: Wave Optics

but for nt" maxima,

A — nl (2
So by equation (1) and (2)
X, d
- —-)tl = nd
p — W )
D
Where x,, is the position of the n'"* maxima
Now in absence of the plate i. e. t = 0
The n*"* maxima Xn =[DTn'1 (in the absence of t) vevrrrerennnns(4)

1. Displacement of the fringes:
If S denotes the displacement of the nt" maxima by introducing the mica sheet, then

, D Dna
S D( )1
= d u

This equation is free from n so the displacement of each maxima will be same.

2. Thickness of mica sheet:
The displacement S of any maxima by introducing a mica sheet of thickness t is given by

S x d
D —-) 1

3. Refractive index of the material of prism:
Once if we know the displacement of the fringes and thickness of the film we can calculate the

refractive index of the material of the film as-

S x d

w - = oy
_ S X+d1

K= ¢

Page 14

http://www.rgpvonline.com http://www.a2zsubjects.com



Unit 5: Wave Optics

Stoke’s treatment of phase change:

When a light wave is reflect from the surface of an optically dens medium, it suffers a phase change of

A
m i. e path difference of >

Let MN is an interface separating the denser medium (below i.e. glass) to rare medium (above i.e. air) it. A
ray of light AB of amplitude "a" incident on the interface MN is partially reflecte along the path BC and
patially refracted into the denser medium along BD.Let r is the coefficient of reflection and t is the
coefficient of transmission then the amplitude of reflected and transmitted wave will be ‘ar’ and at
respectively.

Then in case of no absorption of light

r + t =1
Now if the reflected and refracted rays are reversed the resultant should have the same amplitude 'a’ as that

of the incident ray

Hi< By
Ly < Mo
H1< Ky A C
\ (61
a ar
M1
M1
M N
M N
B
art+ar’t M2
H2
at
E D
D
Figure(18): Reflection and refraction through a Figure(19): Ray diagram on reversing the direction of
surface incidence

When CB is reversed it is partly reflected along BA and partially refracted along BE as shown in figure.
Similarly when the ray DB is revesed it is partly refracted along BA and partially reflected along BE. Now the

content along BE should be zero and that along BA should be equaltoai. e.

art + atr 0 .. .. .. .(D..
art = —atr'
r = '-r

This equation indicates displacement in the opposite direction so according to Stoke’s law, when a light wave

coming from a rare medium an additional phase 7 is introduced in it.
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Unit 5: Wave Optics

Interference in thin film:

Consider a thin film of equal thickness t and refractive index u (> 1A monochromatic light ray SA incident
at angle i is partially reflected and partially transmitted as shown in figure

Rl R’) R3

Incidented ray

C E Reflected Part

Transmitted part

Tl T2 T3

Figure(20): Reflation and transmission of light through a thin film

Reflected system:
In reflected system two waves AR, & CR, are in the position to interfare so the path difference between
AR,& BR,
A = (path ABC)in film — (path AN)in air
A = u(AB + )£ AN
Now from figure it is clearthat AB = BC
A = u(2BC)— AN
But from A BMC
BC
— = sec T
BM
Then BC = BM sec r
BC = 't sec r
And from A ACN AN gin
AC
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Unit 5: Wave Optics

AN = AC sin i
ButAC = AM + MC
AN = (AM + )inh i vrerrenenn (1)
But from A ABM and A BMC
AM
— = tan r = AM = BM tan r = AM
BM
MC
and — = tan r = MC = BM tan r = MC =
BM
but AM = t tan r and MC = t cererene (2)

putting the value of AM and MC in (1) from (2) so we have

AN = (t tan r + )ssintan r
AN = 2t tan i . sin i

sin r |
AN = 2t . sin i

cos T

Multiplying and dividing by sin  we get

sin rsin i
AN = 2t —— . sin r
cos rsin r

i 2 o ‘Ll
AN = 2T _sin i
cos r =—
sin_r
sin®r
AN = 2ut.
cos r
Therefor A = u(2BC)— AN
Putting the value of BC and AN, we get
A = oy sin®r
ut sec r Ezé-ptff
sin?r
A = 2ut|sec r
cos
( 1 smzr)
A = 2ut -
COS T COS
PP ..
- K cos r
cos?r
A = 2ut
cos
A = 2ut cos r vrevrenens (3)
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Unit 5: Wave Optics

A. In Reflected system:
The ray AR; undergoes a reflection from the densor medium so a additional path difference of% must be

added, then

A
A = 2,utcos1§+

1. Condition for constructive interference:

For constructive interference A= nA

So A
2ut cos = = ni
2
2ut cos = nl >
2ut cos = (2n —)%1 (wheren = 1,2,3,
2. Condition for the destructive interference:
For destructive interference A= (2n +) %1
>0 2 A 2n + /11
t = =
ut cos 12 2n +) >
2ut cos = (2 +)/11 A
H SRR
2ut cos = ni (wheren = 1,23,

B. In transmitted system:
In the transmitted system there will be no additional path difference so

A = 2ut cos r

1. Condition for constructive interference: Condition constructive interferenceis A= nA

then 2ut cos = ni (Wheren = 0,1,2,3
2. Condition for destructive interference: Condition for the destructive interference is
A
A = (2n +)El (Wheren = 1,2,3,).
A
then 2ut cos = (2n +)El

So the reflected and transmitted interference patterns are complimentary.

Colour in thick film:

A thick film do not show the any colour in reflected system when illuminated with an extended source of light.
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Unit 5: Wave Optics

Wedge shape film:

A wedge shape film is one whose surfaces are inclined at a certain small angle. Figure shows a thin wedge
shape film of refractive index u bounded by two plane surfaces AB and CD inclined at an angle 6. Let a parallel

beam of monochromatic light falls on the upper surface AB normally and the surface is viewed in the reflected

and refracted system then alternate dark and bright fringes becomes visible.

Incidented ray Reflected Part

B

'\
v C
-« X >
\ Transmitted Part

Figure(21): Reflection and refraction through a wedge shape film

Let the light is incident nearly normally at a point Q on the film, the path difference between the rays reflected

at the upper and lower surface is 2ut (* r ) wlere t is the thisckness of the film at Q.

Reflected system:
P
. R,
Incidented ray Reflected Part
B
A C

Figure(22): Reflection through a wedge shape film

The condition for the maximum intensity (bright fringes):

A
In the reflected system according to the Stokes treatment an additional path difference of — s introduced in

the ray reflected from the upper surface. Hence the effective path difference between the two rays will be A=
2ut {—and the condition for the bright fringes is A= nA

So 2ut -;/; = ni
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Unit 5: Wave Optics

2ut = nd —
#_nz

A
Zﬂt = (Zn —)El

The condition for the minimum intensity (Dark fringes):

o o : 2
The condition for the destructive interferenceis A =£2n +)51

A A
2ut 4 = (2n 4)7

A A
2ut -12- = nl -12-

A A
= Mgy
2ut = na

Transmitted System:
P

Incidented ray

g

Transmitted Part

.
< X :\\

T,
Figure(23): Retfraction through a wedge shape film

In the transmitted system there will be no additional path difference so the effective path difference will be

A= 2ut

The condition for the maximum intensity (bright fringes):

The condition for the maxima is givenas A= nl

so 2ut = nAd
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The condition for the minimum intensity (Dark fringes):

The condition for the minima in interference is A= (2n +) %1

A
So 2ut = (2n +)§1

Fringe width:
For nt" dark fringe let this fringe observed at a distance x,, from the edge, where the thickness of fringe is

t, From figure (23-B) itis clear that ¢, = 0

then t, = x,0 e
So 2ut, = nl ’j\#u/// ’
S0 2, = nA e (1) i c
Similarly for (n  +)fringe Figure(23-B)
2uxp10 = (m A1 (2)
By equation (1) and (2)
2Uxn10 — 28x = (m +)A1 — 1
2u(xps1— M = nd + 1 —
But  Xpy— = B
so 2upe  — A
8 A
- 2ub
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Newton’s Ring:

Formation of Newton’s Ring:
When a Plano-convex lens of large radius of curvature is placed with its convex surface in contact with a

plane glass plate, an air film of gradually increasing thickness is formed between the upper surface of the
plan glass plate and the lower surface of the Plano-convex lens. If a monochromatic beam of light is allow to
fall normally on the upper surface of the film then, alternative bright and dark concentric fringes with their

centre dark are formed. These fringes or rings are known as the Newton’s rings.

R, Reflected Part

Plano-convex lens

Plane glass plate

Transmittedmx‘wfp,

Figure(24): Formation of the Newton’s rings

Experimental arrangement:

The experimental arrangement is shown in the figure. Light rays reflected upwards form the air film,
superimpose each other and interference takes place, due to which the alternative bright and dark

concentric rings are formed those can be seen by the telescope.
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————

A A A

Sodium
lamp
/—\V Source

Plano-convex lens

N\

N

I l Plane glass plate

Figure(25): Newton’s ring experimental arrangement
The fringes are circular because the air film is symmetrical about the point of contact of the lens with the

plane glass plate.

Theory:

The rings are formed both in reflected and refracted part.

Reflected Part:
As the films are obtained in the reflected part the effective path difference between the interfering rays is

given by
y
A = 2ut cos S (1)
Where u is the refractive index of the film, t is the thickness of the film, r is the angle of incidence. The

A. . . .
factor 5 Is account for the phase change of  on reflection from the lower surface of the film. For airu =

and for normal incidencer = th@n
A
A — Zt _12_ ceeenns (2)

Central fringe:

At the centre i.e. at the point of contact t

So A =

N> O

This is the condition for the minimum intensity, hence the central fringe will be dark.

For Constructive interference (i.e. maxima):

The condition for the constructive interference by thin film is given as

A = ni
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A
2t JE = ni
A
"o
A
Then 2t = (2n - 51)
It is the condition for constructive interference Wheren = 1,2,3

For destructive interference (i.e. minima):

The condition for the destructive interference by the thin filmis givenas A  €2n +) %1

2 4 (2n +) 4
bt o= n )3
2t — nAa

It is the condition for minima Wheren = 1,2,3

Shape of the fringes:
As in air film t remains constant along the circle with its center at the point of contact, the fringes are in the
form of the circles, since each film is the locus of the constant thickness of the air film. These fringes are

known as the fringes of equal thickness.

Figure(26): Diameter of Newton'’s ring Figure(27): Shape of the Newton'’s rings

So the diameter of the bright ring is proportional to the square root of the odd number.

Diameter of Bright ring:

Let L is the lens placed in the glass plate MN the point of contect is shown by 0. Let R is the radius of the
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Unit 5: Wave Optics

cuvature of the curved surface of the lens. Let r be the radius of the Newton’s ring where the film thickness
ist
from the right angle A CAB

RZ = (R )% 7

R? = R*+ 24— 2Rt % r

As the air film is very thin so t? can be neglected

0 = —2Rt +%r
r2 = 2Rt

2
2t =

R

Substituting the value of 2t in the equation for bright ring i.e. 2t #€2n + )ﬂl

So r2
— = (2 -1
7 (2n +)2
Radius of # brigth ring
_ (2n +)AR
n, = |[— 7
2
So the diameter of nt" bright ring
D, = 2n,

50 D ’(Zn +)AR
n = 2 —

p, = J@n +)2R

h = V ZAR V 2n + 1
n X 2n + 1
Diameter of the Dark ring:
Condition for dark ring is
2t = nid
And 2
2t = L
R
So on comparing these two equation we get
2
" = m
R
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r> = nRA
ro= nRA

~ the diameter of the dark ring
D, = 21,
D, = 2VnR4
D, = V4nRA
D, = V2nV2ZRA
D, % V2n

The diameter of dark ring is proportional to the square root of even number.
So, as we go far from the centre the thickness of the ring reduces, this limits the number of rings in any

pattern that means infinite number of ring can-not be seen.

Newton’s Rings in transmitted part:

In case of transmitted light, the effective path difference is 2ut cos r

“,
P R, Reflected Part %,
Yo, R (%
%, %
(S 2
%
(%
’E;cJ,
Plano-convex lens

Plano-convex lens
Plane glass plate
Plane glass plate \
Transmitted part T,

Figure(25): Newton’s ring reflection system Figure(26): Newton’s ring in Refracted system

Transmitted part:
Constructive interference:

2t = n4i

Destructives interference:

2
2t %2 +)l
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Unit 5: Wave Optics

Applications of the Newton’s Ring:

1. Determination of wavelength of light

Let D, and Dy, respectively the diameters of the n*" and (n  +)"pdark rings where p is an integer. Then

by equation
D2 = 4ANRL st (D
p = 1(for
Similarly the diameter of (n +)pring is given by
Divp = 4 HIRA 2
So by equation (1)& (2)
Divp— H = 4(n +)RA — 4nRA
Diiy— ® - 4nRA + 4pRA — 4nRA
DZ,— D - 4pRa
Dip- B
4pR
. Diy- b
4pR
2. Determination of refractive index of any liquid:
For air film (DZ,, — ,b)ai = 4pRA v u = 1forair .. .. . o . . (D
intiquid (D2 = B),yuie = 4”’” (2D

By equation (1) and (2)

(D2 = )air 4pRA
= 4pRA
(Dn+p )llquid (T)
(Dn+p @air
8 (Dip— P

liquid
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Diffraction:

Bending of the light form the sharp edges of the obstacle is called the diffraction.

The intensity of light outside the geometrical shadow of an obstacle and presence of light within its

geometrical shadow is called the diffraction of light.

The deviation of light from the rectilinear path is called the diffraction.

S.N. Fresnel’s diffraction S.N. Fraunhofer’s Diffraction

1. Either the source of light or screen or both 1. Both the screen and source are effectively at
are at finite distance form obstacle or infinite distance from the obstacle or aperture.
aperture.

2. | Wavefront may be of any type i.e. plane, 2. The incident wavefront is always a plane
spherical or cylindrical. wavefront.

3. No need to use the lenses. 3. Lenses are required.

4, Diffraction pattern is the image of obstacle 4, Diffraction pattern is the image of the source.
or aperture.

5. Intensity of light at any point is found by the 5. Intensity at any point is measured by the
half period zone method which is not mathematical treatment which is more
accurate. accurate method.

Difference between diffraction and interference:
S.N. Interference Diffraction

1. | This phenomenon is the result of interaction 1. This phenomenon is the result of interaction of
taking place between two separate wave light between the secondary wavelengths
front originating from two coherent sources. originating from different points of the same

wavefronts.

2. | The regions of minimum intensity are usually 2. The regions of minimum intensity are not
almost perfectly dark. completely dark.

3. Interference fringes may or may not be of 3. Diffraction fringes are not of the same width.
same width.

4. | All maxima are of same intensity. 4, The maxima are of varying intensities.

http://www.rgpvonline.com
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Fraunhofer’s diffraction at a single slit:

Let parallel beam of monochromatic light of wavelength A be incident normally upon a narrow slit AB =. e
According to Huygens’s theory a plane wave front is incident normally on the slit AB. Each point of AB sends
out sencodory wavelets in all directions. The rays proceeding in the same direction as the incident rays are

focused on O, while those diffracted through an angle 8 are focused at P.

O

[0}
< o|—>»
b

=
—

Figure(27): Fraunhofer’s diffraction
To find the intensity at point P, we drop a normal ANM on the ray BP, the optical path from each point of the
plane ANM to point P will be equal.

Now the path difference between the wavelets reaching the point P from point A and B is

A = BM
But from AABM

BM
— = sin 0
AB
BM = AB sin 6
BM = e sin 6
A = e sin 6
. 2T

so phase diff = - X A
. 21

phase dif f = - X e sin 6 v (1)

Now if we consider n number of infinite point sources of secondary wavelengths on the plane wave frontAB
then this can be divided into n equal parts, so phase difference between the waves obtained at the point P

from any two consecutive parts

1 2w
» = ZxZ_. e sin 6
n A
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Now to find the intensity at point P there are following two methods are available
1. Phase diagram Method.
2. Integral Method.

Phase diagram method:
In the figure, draw vectors OP;, P,, JP3; ... .. .. such that the magnitude of each vector is A and angle

between the two consecutive vectors is ¢ . The vector OP, gives the resultant vector. Let the magnitude of
the resultant vector OP, is Ry. If C is the centre of the polygon formed by the vector then by the simple
geometry we can see that each vector substance ¢ at the centre C and the angle substaended by the
resultant vector OP, at the centreis ng.

Let CX and CY are the normal drawn of first vector OP; and resultant vector OP, from centre C .

from right angle triangle A CX0

0X - ocC sin%X
1 A
But 0X _ -oP == [~ oP *
2 2
A
5 = oC Sin%x v (3)

Similarly from A COY

n
oy _ n—do
— O0C si >

But O0Y

o I|| ks
(74
o
&
[
S
)
wn
NS
N—
—~
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By (3) and (4) (RZ_H) ocC sinan)Q
@ oc snd)
R, = 4 sin fg)

Ry = A Z . (6)
sin %(Zﬁsm 9)
Let me sin 6
e 1 =
sin(p)
Then Ry - 4 sin EO
p . .
Now n is very small so sin g) %
A sin(p)
Then Ry = —(E)
n
sin
So Ry = né ;p)
sin(p)
Rg = 0 p
Where Ry= nd
Now the intensity
I o« R}
I = kRj [Where k is a constant
. 2
sin
Ik [(R p(p)]
. 2
sin
)
sin(p)]”
I - 10[ - ] . e . . (D] Wherely= k@

Conditions for maxima and minima:

. 2
From the equation I =, [ff#] it is clear that the resultant intensity I at point P on the screen depends on

the angle of diffraction 8 or on P. For maxima, the derivation of I with respect to P must be zero.i. e.
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d sin(p)2 B
%{IO[ ¢ } _ 0

sin/ g cos p — _
e ®

Condition for Minima:

For the minima, the first term in the above equation (8) should be zero i.e.

sin
/4 _ 0
p
sin 7 = O
p = *Tmn
Putting the value of p we get-
me sin
1 = 4mn
e sin = tma

Wherem = 0, 1, 2, 3,

Condition for maxima:

Now the second term of equation (8) will show the condition for maxima-

cos -
ie. PP~ _
p
p cos = sin p
sin p
P = Cos p
p = tan p
The condition for maximais p = tan p

To find the value of p for which the above condition may hold, we draw two curves

y = p e e (9).
y = tan ; . .. (20)
On the same graph as shown
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=
¥
A
=

T T
2 2 2 2

Figure(29): Graph

The value of p at the points of intersection of these two curves satisfy the equationp = tan p
At the central maxima: 6 = 0 = p = 0
me sin
So -0
A

So, the intensity at the principle maxima

Applying the limits we get

sin
lim( }) -1
p—0 p

So I = 1 (maximum)
So at the principle maxima the intensity will be maxima.

Intensity for subsidiary maxima:

me sin 6.
= i.e. the value

For subsidiary maxima the value of sin must be maximum, for this the value of p

of sin éhust be maximum i. e. sin 6 = 1

so at the,
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sin 2= I
first subsidiary maxima L = I 37:2 :é
2
[ . sm]?
sin— I
Second subsidiary maxima I, = I, 57:2 :é
2
[ . 7P
Third subsidiary maxima I I ) lo
! 3 = 0 7T =
n 120
2
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Fraunhofer’s diffraction at a double slit:
Let a parallel beam of monochromatic light of wavelength A be incident normally upon two parallel slit AB and

X
L2
A P
L &
0
A +
B Ir
S | A N Q
e+d e‘\‘
¢ (@ \‘ M _/
i ———— o
Y

Figure (30): diffraction at a double slit.
Suppose each slit diffracts the beam in a direction making an angle 8 with the direction of the incident beam.
From the theory of diffraction at a single slit the resultant amplitude is

sin(p)
p

R9=

me sin 0 .
Wherep = 3 and R, is a constant

These two slits can be considered as two coherent source placed at the centre of the slits. Then resultant
intensity at point P will be the result of interference between these two waves of same amplitude and phase
difference ¢

Now the resultant amplitude at point P

4 = \/af+ 2+ 2m,cos O (interference)

So R = JR§+ R+ 24Rgcos ¢

R = \/2R§(1 + cok ¢

H
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¢
= 2R —
R = g COS >
_ in(p)
But we know that Rg = (RS >
sin [0)
So R = ZRO( j? cos—X e e (1)
p 2
Therefore the resultant intensity at point P will be
I «x?R
I = %R

Where k is a constant

Putting the value of R from equation (1)

I = k. 43?(512 fcos%%) o (2)

letly = 4kR

Hence resultant intensity

Condition for Minima:

From the equation (3) it is clear that the intensity will be minimumwhen sin p = 0 = p = +mm
Wherem = 1, 2, 3 ..butm..#.. 0..
So putting the value of p we get

me sin
= - mm

A
e sin — mA
Where m=1, 2, 3,...... butm # 0 (*  m = O0isthe condition for the maxi

Condition for maxima:

From the equation (3) it is clear that the intensity will be maximum when term (%7 will be maximum.

sin 1 = 1
T
= p = (2m —)51
me sin T
_ 2 -4
= — = @m -);
. A
= e sin — (2m —)51

Where n=0,1,2, 3, 4.....
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Missing order maxima:

The condition for the interference maxima is given as A= nAi

But A

e sin 6 (from single slit)
So the condition for the interference maxima will be
e +d s=mt L. (1)

And the condition for the diffraction minima is given as

e sin = n/l . . e (2)

Figure(31): Intensity graph of double slit diffraction
For certain value of d certain interference maxima become absent from the pattern. Let for some value of 6

the following two conditions be satisfied simultaneously

Dividing the equation (1) by (2)

e + ﬁ
e T om
Case I: Ifd = e
e + n
Then -
e m
n
= — = 2
m
= n = 2m
f m =1, 2, 3 .. w. .. .. > n = 2, 4 6

This means that 2, 4, 6 etcorder of interference maxima will be missed.
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If d = 3e
Case I Ifd = 2e
Then e+ _ "
e m
n
3 = —
m
= n = 3m
fm = 1, 2, 3thenn..=..3, 6, 9

This meansthat 3, 6, 9 etc. will missed.

e ————
Page 39

http://www.rgpvonline.com http://www.a2zsubjects.com



Unit 5: Wave Optics

Fraunhofer’s Diffraction of N Parallel slit:

Diffraction Grating:

It is an arrangement consisting of several parallel and equidistant slits each of equal width.

It is constructed by drawing the several equidistance parallel lines on an optically plane glass plate with a
pointed diamond. The distance between two consecutive slits is a +(=b )ewhich is called the grating
element. Genrally the value of e for the grating to be used with the visual light is of the order of
107°m(i. e. 100Q0des drawnon 1 cm length of the grating.

Si

‘ Opaque

e=atb

Transperent s,

< PP
—

= T5
<) (<>}

A\ 0
‘ Opaque ‘ ~\ .
Transperent .
Figure(32): Diffraction Grating Figure(33): Diffraction Grating
Theory:
In figure, AB is a grating of N parallel and equidistance slits S;, 5§ 3S.. .. .the.width of each slitis’a’ and
width of opaque space between the two consecutive slitsis 'b’.i. ethe gratingelemente = a. + b

Let a plane wavefront of wavelength A is incidents normally on the grating. Then diffracted by it is focused on

a screen by means of a convergent lens L on screen.

Intensity distribution: It is clear from the figure that

diffracted waves do not reach a point on the screen in
the same phase since their optical paths are not equal.
The path difference between the two consecutive wave
is A = e sin 6

Therefor the phase diff.

2w A
= X
¢ A
Wave diffracted at an angle 6 from each slit is Rg =
sin m esin 6
RO( - 3 where p = 3

[by single slits diffraction]

Figure(34): Phase Diagram
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Now we can find the resultant amplitude due to the superposition of such N waves by phase diagram method.
In figure we draw vector OP;, P,, P ... such that magnitude of each vector is Ry and the angle between
the consecutive vector is ¢. The vector OF, which joints the initial points of first vector and final point of last
vector is R and this vector sustained an angle N¢. OX and OY are the normal plotted from the centre of

polygon on first and resultant vectors.

From the figure in A CX0

ox
0C = sSin 2
ES 0X = o0c¢C Si%)'
But0X =0P, =%¢
2 2
R
79 = ocC si%

Similarly in A CYO
oc = k)
= OC = Sin
N
= oY — 0C si >

But OY = =
R N
z = 0C sin—j() e (2)

O oc
()~ oc sing)(
)
Re = |sin §)
L)
- sin g)

I T[ )

Dividing equation (2) by (1)

On substituting the value of Ry we get

sin

Multiplying and dividing by N we get
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So the resultant intensity will be given as
I
I

Putting the value of R from (3) we get

sin sin L\?)
NRO( p jON sin%)
R2
kR?

Where k is the proportionality constant

2
k N2R3 (Sin j; o %)

p N sin%)
| (sin )% sin i\?) : a)
o= " Sin%) o (3).

Where I, = k AR?

N
In this expression the term (%7 represents the intensity due to diffraction due to a single slit, while second

sn(%2)

2
term [ rg)] represents the intensity due to interference of wave obtained from N slits.
N si

Condition for Principle Maxima:

For principal maxima the path difference will be zero so the phase diff then sin %) =

n = 0,1,2 then sin %) is also zero and in the limit when sin g) — th@ value of term

= +nmvhere

)

J

T

=

2
] will be

sin

~

N. Hence from equation the resultant intensity will be maximum.

i.e.

lim —sin %)

¢ . P
520N sm;)

So we have I

Iy (Siz f ()

Which is the intensity at principle maxima i.e. similar to the intensity by a single slit.

Condition for Minima:

From the equation (3) it is clear that the intensity will be minimum when sin% = But sin% = 0
i.e. sin {éﬁ) 0
> Ng tmn
2
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Wherem = 1,2,3,

2me sin 0

But ¢ 7

N 2me sin
2 A

So = mm we o (B).

- mA
e sin = &

This is the condition for the minimum intensity for N-slit diffraction.

Condition for Secondary maxima:

dal

i

Condition for maxima is

So from equation (3)

(o j& sin )\’

E fo p N sin%) B 0
I_O(Sin yzi sin i\?) 2 - 0
NZ\ P d¢ sin g)

0

I RELI
N2\ p sin ) {sin )}

gsin %) Cos%z) %sin l@) . c%) = 0
%sin g) cos%q() =%sin i\?) : c%s) ( ......... (6)

= N tan%X = tan l@)

again by equation (6)
N tan%X cos%q() sin {g[))
= sin lgﬁ) N tan%X cos%do
. N tanf)(
sin )~ {;)
N tand)(

SR ]

Page 43

http://www.rgpvonline.com http://www.a2zsubjects.com



sin lgp

On squaring both sides we get

N———

NZsin g)

So by equation (3) and (7)

~

Unit 5: Wave Optics

By (7)

IRECEREC

NZ
1+ 2w 1) %(§)

1
1+ 2w 1) %(§)

; (sin );x 1
\p 1+ 2w 1) %(f)

This is the expression for the intensity at the subsidiary maxima in N-slit diffraction.

http://www.rgpvonline.com
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Resolving Power of Optical Instrument:

To distinguish two close object is called geometrical resolution and the ability of an optical instrument to

distinguish the image of very close object is called the resolving power of that optical instrument.

The ability of instrument to produce the separate diffraction pattern is known as resolving power.

Raleigh’s criterion of resolution:

According to this criterion two sources are resolved by an optical instrument when the central maxima in the

diffraction pattern is fall over the first minima in the diffraction pattern of the second maxima and vice versa.

Principal

Principal :
Maxima

Maxima
o~
i
]
]

I

\
\
\
|
\
\

Nl A

L4 LN

Figure(35): Two separate maxima

Resultant
Intensity
DIP Curve

Figure(36): Condition of just resolution

Resultant
Intensity

Figure(37): Maxima that cannot be resolve

Resolving power of Grating:

In order to illustrate the criterion let us consider the
resolution of two wavelengths 1; and A, . Figure shows
the intensity curve of the diffraction pattern of two
wavelengths. The diffraction in wavelength is such that
their principal maxima are separately visible. There is a
distinct point of zero intensity in between the two.

Hence the two wavelengths are resolved.

In the case when there is small dip between the maxima
of A;andA, such that the central maxima of
wavelength A, coincide with the first minima of 1, and
wise versa as shown in the figure (36). The resultant
intensity curve has a dip in the middle of the two central
maxima. Thus two wavelengths can be distinguished

from one another

If the difference between the two wavelength 1;and 1,
is so small that the maxima corresponding to
wavelength come still closer as shown in the figure (37)
the resultant intensity curve in this case is quit smooth

without any dip, thus wavelengths cannot be resolved.

The resolving power of a diffraction grating is defined as the capacity to form separate diffraction maxima of

http://www.rgpvonline.com
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. . . A
two wavelengths without which they are very close to each other. This is measured by e

- Let AB is a plane diffraction gratting having grating
A -
elemente = (a and H)total numbers of number of
slits. Let a beam of light having two wavelengths A and

A+ @Anormally insidented on the gratting. Pyis the

P Order nt" primary maxima of spectral line of wavelength A at
\(/ 1

‘ 5 an angle of diffraction 6,, and P, is the n‘* primary
)

Centralimage ~ maxima of wavelength (1 + daf) diffraction angle

(6n+ dp

rYYyYyyyvyvyvyvvvyy

The principal maxima of A in 6,, direction will be

(@ F)shn = N (1)

B

Figure(38): Formation of diffraction pattern by a
And the equation of minima N(a +)sbnh ,f= mAi
grating
Where m is an integer except 0, N, 2N .. ,.
because for these values of m the condition for maxima

is satisfies and we obtain diffraction maxima.

Now first maxima adjacent to nt" principle maxima

(a H)sm@,+ d§) = n(A +)dr (2)
And first minima
N(a +)sm@,+ d = (N +)d2 e (3)
Now multiplying the equation (2) by ;y we have
N(a +)sm@,+ dp = nNQA +)Xd (4)
By (3)& (4)
(nN +)A1 = nN@A + )dA
nNA + = nNA + nN
% = nN
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