
 UNIT – I

Topic: - Introduction to Software Engineering

Unit-01/Lecture-01

Software Engineering : [RGPV/JUNE-2013(7), JUNE 2011(10)]

Practical application of scientific knowledge in the design and construction of computer

programs and the associated documentation required to develop, operate, and maintain

them.

The study of systematic and effective processes and technologies for supporting software

development and maintenance activities ͟͞

–  Improve quality͟

–  Reduce costs͟

Software product may be

1. Custom- developed for a single customer according to their specifications.

2. Generic- developed to be sold to a range of different customers.

Software Characteristics

While developing any kind of software product, the first question in any developer͛s mind

is, ͞What are the qualities that good software should have?͟ Well before going into

technical characteristics, I would like to state the obvious expectations one has from any

software. First and foremost, a software product must meet all the requirements of the

customer or end-user. Also, the cost of developing and maintaining the software should

be low. The development of software should be completed in the specified time-frame.

Well these were the obvious things which are expected from any project (and software

development is a project in itself). Now let͛s take a look at Software Quality factors. These

set of factors can be easily explained by Software Quality Triangle. The three

characteristics of good application software are :-

 1) Operational Characteristics

 2) Transition Characteristics

 3) Revision Characteristics

we dont take any liability for the notes correctness. http://www.rgpvonline.com

What Operational Characteristics should a software have ?

These are functionality based factors and related to ͚exterior quality͛ of software. Various

Operational Characteristics of software are :

a) Correctness: The software which we are making should meet all the specifications

stated by the customer.

b) Usability/Learn ability: The amount of efforts or time required to learn how to use the

software should be less. This makes the software user-friendly even for IT-illiterate

people.

c) Integrity: Just like medicines have side-effects, in the same way a software may have a

side-effect i.e. it may affect the working of another application. But a quality software

should not have side effects.

d) Reliability: The software product should not have any defects. Not only this, it

shouldn͛t fail while execution.

e) Efficiency: This characteristic relates to the way software uses the available resources.

The software should make effective use of the storage space and execute command as

per desired timing requirements.

f) Security: With the increase in security threats nowadays, this factor is gaining

importance. The software shouldn͛t have ill effects on data / hardware. Proper measures

should be taken to keep data secure from external threats.

g) Safety: The software should not be hazardous to the environment/life.

What are the Revision Characteristics of software?

These engineering based factors of relate to ͚interior quality͛ of the software like

efficiency, documentation and structure. These factors should be in-build in any good

software. Various Revision Characteristics of software are :-

we dont take any liability for the notes correctness. http://www.rgpvonline.com

a) Maintainability: Maintenance of the software should be easy for any kind of user.

b) Flexibility: Changes in the software should be easy to make.

c) Extensibility: It should be easy to increase the functions performed by it.

d) Scalability: It should be very easy to upgrade it for more work(or for more number of

users).

e) Testability: Testing the software should be easy.

f) Modularity: Any software is said to made of units and modules which are independent

of each other. These modules are then integrated to make the final software. If the

software is divided into separate independent parts that can be modified, tested

separately, it has high modularity.

Transition Characteristics of the software :

a) Interoperability: Interoperability is the ability of software to exchange information with

other applications and make use of information transparently.

b) Reusability: If we are able to use the software code with some modifications for

different purpose then we call software to be reusable.

c) Portability: The ability of software to perform same functions across all environments

and platforms, demonstrate its portability.

Importance of any of these factors varies from application to application. In systems

where human life is at stake, integrity and reliability factors must be given prime

importance. In any business related application usability and maintainability are key

factors to be considered. Always remember in Software Engineering, quality of software is

everything, therefore try to deliver a product which has all these characteristics and

qualities.

Software Crisis:

A software crisis is a mismatch between what software can deliver and the capacities of

computer systems, as well as expectations of their users. This became a growing problem

in the 20
th

 century as computing grew by leaps and bounds and software was unable to

keep pace. As the complexity of systems grows, so do the needs of users, who expect

increasingly more performance from their software. Programmers may struggle to keep

pace, creating a software crisis.

Consumer software typically moves through a slow series of development phases, but

makes up a small portion of the volume of business in the industry. The bulk of software

development is sunk into systems for specific applications, ranging from the programs

that handle missile guidance aboard naval cruisers to internal record-keeping for health

insurance companies. This software generally requires a substantial investment from the

customer, as well as extensive programming from personnel charged with developing,

testing, and maintaining it.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Such projects can run into a software crisis where they start to go over budget and take

much longer than expected to develop. The programmers working on the software may

have to deal with ongoing bug fixes while learning new aspects of a system, making

adjustments for the client, and addressing other issues that arise. Low quality can be a

concern, as the programmers may experience increasing pressure to meet budgets at all

costs, even if it means the software won͛t be of good quality. Less documentation tends

to be produced as well.

This is not just an issue for the development of new software products. Another concern

can be the need to maintain older software which may have problems related to poor

development or the failure to anticipate growing needs. Programmers could be spending

large amounts of time on keeping legacy software functional so a company can continue

to operate. With high investment in the older software, the company may be reluctant to

order a new program, even if it would better meet their needs, because this could involve

more expense and problems during the changeover.

Pressure to produce complex, advanced code can be a significant contributor to a

software crisis. It can be difficult to control the pressure while keeping costs under control

and staying on a time table. Some measures for dealing with a software crisis can include

substantial advanced planning, selection of highly qualified personnel, and ongoing

updates to make sure the project stays on task and on focus.

Traditional Software Engineering

One of the main events in the software industry at the beginning of the new century is

the appearance of the agile methodologies for software development. Most of the

companies today are using these methodologies to manage their projects. They radically

changed the landscape of the development methods.

The agile methods are based on a set of new principals of design and build – different

from the principals used before. However to understand the agile methodologies first of

all we need to understand the reason of their appearance. Thus we͛ve to first understand

the traditional methods of software development – their features, their pros and cons,

and nevertheless we͛ve to understand their relevance.

Features of the Traditional Methods

The so called traditional approaches, also known as ͞engineering͟ approaches, are

defined at the very beginning of the software sciences. Of course the software

development process needs to be controlled somehow. To do so the software engineers

came along with the well known engineering methods of controlling the processes. These

methods are applying a disciplined approach where the stages of design and build are

well predictable. Detailed stages of analysis and design precede the stage of building the

software.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

These methodologies are well documented and thus are quite complex to apply. Of

course this is the main reason when we talk about their disadvantages. One of the main

disadvantages is that these traditional methodologies are very bureaucratic. In practice

the high level of detail in a methodology leads to a high level of complexity. Actually the

work of managing the methodology itself is more than the work on the software product.

Traditional software engineering, CMMI and its problems

Well into the 1980s the largest buyer of software development services in the world, the

US Department of Defense, was having trouble getting projects done on time, on budget

and with the right specifications. Despite working with some of the best and most

renowned software development companies out there, it still had close to a 50 / 50

chance of getting a project right. Worried about its performance, it set up to fund,

together with Carnegie Mellon University, the Software Engineering Institute. This

institute was tasked with compiling a set of software development best practices that

could provide both a benchmark aginst which to measure current vendors, as well as

concrete guidelines current vendors should follow to improve their software engineering

practices. The initiative ultimately gave birth to the Capability Maturity Model Integration

(CMMI) and its levels of 1 to 5.

The Capability Maturity Model ranks companies into levels, going from those that are at

Level 1 (operating under processes that are not managed, or ad-hoc) to those that reach

Level 5 (optimizing). It is not our purpose here to go into detail about what each level

means, except to point out that at Level 5 companies must have complied with following

the tenets of more than 16 software and systems development process areas, including

the ability to (at level 2) manage their software development process (configuration

management, project monitoring and control, project planning, requirements

management); define their approach to software development (decision analysis and

resolution, organizational training, risk management, validation,

verification); quantitatively manage their development process (measure organizational

process performance, reliably measure productivity, error injection and other key

variables) and optimize their process, which involves constantly reviewing the causes of

process problems and taking measures to improve and resolve them.

The nature of the DoD͛s needs influenced CMMI at the core. The DoD͛s software

development projects tend to be large and often interact with hardware. Furthermore,

they are government funded, which requires measures of ͞financial transparency͟ that

limit budget flexibility, often requiring projects to provide a fixed cost. Thus, it is not

surprising to see a CMMI model that was slanted towards traditional RUP (the Rational

Unified Process) methodologies, especially in what regards to:

1. Big Requirements Up Front (BRUF). BRUF is necessary to adopt so-called formal

estimation techniques (such as COCOMO I/II, Function Points, Feature Points, etc.)

that allow a software development team to have a shot at estimating, in advance,

the effort required –and hence the cost—of a project;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.pslcorp.com/component/content/?id=71&Itemid=493
http://www.pslcorp.com/component/content/?id=71&Itemid=493

2. High formality and preciseness in the way requirements are elicited and

documented. Under strict RUP or even under a more archaic ͞waterfall

approach͟, requirement engineering is a ceremonious process that documents, in

writing, use cases (i.e. using UML diagrams, for example), functional and non-

functional requirements, process flows, mock-up screens, etc.

It is not surprising that under RUP (or also under a traditional waterfall approach),

the inception and elaboration stages take 40 to 50% of the total time spent in

the software development project.

3. Testing ͞after the fact͟, i.e. after code has been written. This is clearly a quality

control, but often leads to detecting errors late, when correcting them is more

expensive.

4. Strict controls to ͞requirement changes͟. Processes for changing requirements are

often so heavy and difficult, they seem to be designed more to prevent change

than to manage change within a software development.

In essence, the software development methodologies proclaimed to be ͞best-practices͟

under CMMI and RUP, did produce significant gains in the quality of the code. However,

this came at a significant price both in terms of:

 Time (time was more predictable but the formality significantly increased the

length of the software development vs. ad-hoc programming);

 Functional relevance (a rigid process did not allow applications to easily adapt to

changes in the business environment, so the ensuing application often was ͞what

the client asked for but not really what the client needed͟;

 Frustration with cost (the ensuing application was not cheap to make, due to the

administrative overhead of all the formality of the process, and the predicted cost

of the application still did not match the initial ͞fixed price͟ estimate –yes,

estimates where off by a lesser amount vs. ad-hoc estimations, but they were still

significantly off.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTIONS Year Marks

Q.1 Discuss the major differences between software

engineering & some other engineering. Discipline, such as

bridge design or house building. Would you consider state

of art software engineering as a true engineering

discipline?

JUNE

2013

7

Q.2 What is prime objective of software engineering? Define

software engineering paradigm.

JUNE

2011

10

Q.3 Give the importance of software engineering. Define

software process. State the important features of a

process

JUNE

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-Object Oriented Software Engineering, Layered Technology

Unit-01/Lecture-02

Object Oriented Software Engineering

Object-oriented software engineering (commonly known by acronym OOSE) is an object

modelling language and methodology.

OOSE was developed by Ivar Jacobson in 1992 while at Objectory AB. It is the first object-

oriented design methodology to employ use cases to drive software design. It also uses

other design products similar to those used by Object-modelling technique.

It was documented in the 1992 book Object-Oriented Software Engineering: A Use Case

Driven Approach, ISBN 0-201-54435-0

The tool Objectory was created by the team at Objectory AB to implement the OOSE

methodology. After success in the marketplace, other tool vendors also supported OOSE.

After Rational Software bought Objectory AB, the OOSE notation, methodology, and tools

became superseded.

 As one of the primary sources of the Unified Modelling Language (UML), concepts

and notation from OOSE have been incorporated into UML.

 The methodology part of OOSE has since evolved into the Rational Unified

Process (RUP).

 The OOSE tools have been replaced by tools supporting UML and RUP.

 OOSE has been largely replaced by the UML notation and by the RUP

methodology.

 Software Engineering: Layered Technology-:-[RGPV/JUNE-2013(7)]

Software Development is a Layered Technology: Software development is totally a

layered technology. That means, to develop software one will have to go from one layer

to another. The layers are related and each layer demands the fulfillment of the previous

layer. Figure below is the upward flowchart of the layers of software development.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Object_modeling_language
http://en.wikipedia.org/wiki/Object_modeling_language
http://en.wikipedia.org/wiki/Ivar_Jacobson
http://en.wikipedia.org/wiki/Objectory_AB
http://en.wikipedia.org/wiki/Use_case
http://en.wikipedia.org/wiki/Object-modeling_technique
http://en.wikipedia.org/wiki/Special:BookSources/0201544350
http://en.wikipedia.org/wiki/Objectory
http://en.wikipedia.org/wiki/Rational_Software
http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Rational_Unified_Process
http://en.wikipedia.org/wiki/Rational_Unified_Process

1. A Quality Focus : Software engineering must rest on an organizational commitment to

quality. Total quality management and similar philosophies foster a continuous process

improvement culture, and this culture ultimately leads to the development of increasingly

more mature approaches to software engineering. The bedrock that supports software

engineering is a quality focus.

2. Process: The foundation for software engineering is the process layer. Process defines a

framework for a set of Key Process Areas (KPAs) that must be established for effective

delivery of software engineering technology. This establishes the context in which

technical methods are applied, work products such as models, documents, data, reports,

forms, etc. are produced, milestones are established, quality is ensured, and change is

properly managed.

3. Methods: Software engineering methods provide the technical how-to's for building

software. Methods will include requirements analysis, design, program construction,

testing, and support. This relies on a set of basic principles that govern each area of the

technology and include modeling activities and other descriptive techniques.

3.Tools: Software engineering tools provide automated or semi-automated support for

the process and the methods. When tools are integrated so that information created by

one tool can be used by another, a system for the support of software development,

called computer-aided software engineering, is established.

Goals of Software Engineering:

• Need to understand requirements.

• Want software with maximum functionality.

• Code must be reliable.

• Cost to develop and maintain important.

• Want results as fast as possible.

• Must minimize development risks.

Software Process Framework:

Software Process: Process defines a framework for a set of Key Process Areas (KPAs) that

we dont take any liability for the notes correctness. http://www.rgpvonline.com

must be established for effective delivery of software engineering technology. This

establishes the context in which technical methods are applied, work products such as

models, documents, data, reports, forms, etc. are produced, milestones are established,

quality is ensured, and change is properly managed.

Software Process Framework: A process framework establishes the foundation for a

complete software process by identifying a small number of framework activities that are

applicable to all software projects, regardless of size or complexity. It also includes a set of

umbrella activities that are applicable across the entire software process. Some most

applicable framework activities are described below.

Communication: This activity involves heavy communication with customers and other

stakeholders in order to gather requirements and other related activities.

Planning: Here a plan to be followed will be created which will describe the technical

tasks to be conducted, risks, required resources, work schedule etc.

Modeling: A model will be created to better understand the requirements and design to

achieve these requirements.

Construction: Here the code will be generated and tested.

Deployment: Here, a complete or partially complete version of the software is

represented to the customers to evaluate and they give feedbacks based on the

evaluation.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

These above described five activities can be used in any kind of software development.

The details of the software development process may become a little different, but the

framework activities remain the same.

S.NO RGPV QUESTIONS Year Marks

Q.1 What do you understand by a layered software design?

What are the advantages of a layered design? Explain

your answer by using suitable examples.

JUNE

2013

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-CBSE, Software Development Process

Unit-01/Lecture-03

Component Based Software Engineering[RGPV/ JUNE-2014,2013(7)]

Component-based software engineering (CBSE) (also known as component-based

development (CBD)) is a branch of software that emphasizes the separation of concerns in

respect of the wide-ranging functionality available throughout a given software system. It

is a reuse-based approach to defining, implementing and composing loosely coupled

independent components into systems. This practice aims to bring about an equally wide-

ranging degree of benefits in both the short-term and the long-term for the software

itself and for organizations that sponsor such software.

Software engineering practitioners regard components as part of the starting platform

for service-orientation. Components play this role, for example, in web services, and more

recently, in service-oriented architectures (SOA), whereby a component is converted by

the web service into a service and subsequently inherits further characteristics beyond

that of an ordinary component.

Components can produce or consume events and can be used for event-driven

architectures (EDA).

Characteristics of components

An individual software component is a software package, a web service, a web resource,

or a module that encapsulates a set of related functions (or data).

All system processes are placed into separate components so that all of the data and

functions inside each component are semantically related (just as with the contents of

classes). Because of this principle, it is often said that components are modular and

cohesive.

With regard to system-wide co-ordination, components communicate with each other

via interfaces. When a component offers services to the rest of the system, it adopts

a provided interface that specifies the services that other components can utilize, and

how they can do so. This interface can be seen as a signature of the component – the

client does not need to know about the inner workings of the component

(implementation) in order to make use of it. This principle results in components referred

to as encapsulated. The UML illustrations within this article represent provided interfaces

by a lollipop-symbol attached to the outer edge of the component.

However, when a component needs to use another component in order to function, it

adopts a used interface that specifies the services that it needs. In the UML illustrations in

this article, used interfaces are represented by an open socket symbol attached to the

outer edge of the component.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Separation_of_concerns
http://en.wikipedia.org/wiki/Software_system
http://en.wikipedia.org/wiki/Service-orientation
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Event-driven_architecture
http://en.wikipedia.org/wiki/Package_(package_management_system)
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Web_resource
http://en.wikipedia.org/wiki/Modular_programming
http://en.wikipedia.org/wiki/Function_(computer_science)
http://en.wikipedia.org/wiki/Unified_Modeling_Language

A simple example of several software components – pictured within a hypothetical

holiday-reservation system represented in UML 2.0.

Another important attribute of components is that they are substitutable, so that a

component can replace another (at design time or run-time), if the successor component

meets the requirements of the initial component (expressed via the interfaces).

Consequently, components can be replaced with either an updated version or an

alternative without breaking the system in which the component operates.

As a general rule of thumb for engineers substituting components, component B can

immediately replace component A, if component B provides at least what component A

provided and uses no more than what component A used.

Software components often take the form of objects (not classes) or collections of objects

(from object-oriented programming), in some binary or textual form, adhering to some

interface (IDL) so that the component may exist autonomously from other components in

a computer.

When a component is to be accessed or shared across execution contexts or network

links, techniques such as serialization or marshalling are often employed to deliver the

component to its destination.

Reusability is an important characteristic of a high-quality software component.

Programmers should design and implement software components in such a way that

many different programs can reuse them. Furthermore, component-based usability

testing should be considered when software components directly interact with users.

It takes significant effort and awareness to write a software component that is effectively

reusable. The component needs to be:

Software Development Life Cycle [RGPV/ JUNE-2014,2012(7),JUNE 2011(10)]

The Systems Development Life Cycle (SDLC), or Software Development Life Cycle in

systems engineering, information systems and software engineering, is the process of

creating or altering systems, and the models and methodologies that people use to

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://en.wikipedia.org/wiki/Liskov_substitution_principle
http://en.wikipedia.org/wiki/Class_(computer_science)
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Serialization
http://en.wikipedia.org/wiki/Reusability
http://en.wikipedia.org/wiki/Component-Based_Usability_Testing
http://en.wikipedia.org/wiki/Component-Based_Usability_Testing

develop these systems. The concept generally refers to computer or information systems.

In software engineering the SDLC concept underpins many kinds of software development

methodologies. These methodologies form the framework for planning and controlling

the creation of an information system: the software development process.

The System Development Life Cycle framework provides a sequence of activities for

system designers and developers to follow. It consists of a set of steps or phases in which

each phase of the SDLC uses the results of the previous one.

A Systems Development Life Cycle (SDLC) adheres to important phases that are essential

for developers, such as planning, analysis, design, and implementation, and are explained

in the section below. A number of system development life cycle (SDLC) models have

been created: waterfall, fountain, spiral, build and fix, rapid prototyping, incremental, and

synchronize and stabilize. The oldest of these, and the best known, is the waterfall model:

a sequence of stages in which the output of each stage becomes the input for the next.

These stages can be characterized and divided up in different ways, including the

following

There are following six phases in every Software development life cycle model:

Requirement gathering and analysis

Design

Implementation or coding

Testing

Deployment

Maintenance

1) Requirement gathering and analysis: Business requirements are gathered in

this phase. This phase is the main focus of the project managers and stake

holders. Meetings with managers, stake holders and users are held in order to determine

the requirements like; Who is going to use the system? How will they use the

system? What data should be input into the system? What data should be output by the

system? These are general questions that get answered during a requirements gathering

phase. After requirement gathering these requirements are analyzed for their validity and

the possibility of incorporating the requirements in the system to be development is also

studied.

Finally, a Requirement Specification document is created which serves the purpose of

we dont take any liability for the notes correctness. http://www.rgpvonline.com

guideline for the next phase of the model.

2) Design: In this phase the system and software design is prepared from the

requirement specifications which were studied in the first phase. System Design helps in

specifying hardware and system requirements and also helps in defining overall system

architecture. The system design specifications serve as input for the next phase of the

model.

3) Implementation / Coding: On receiving system design documents, the work is divided

in modules/units and actual coding is started. Since, in this phase the code is produced so

it is the main focus for the developer. This is the longest phase of the software

development life cycle.

4) Testing: After the code is developed it is tested against the requirements to make sure

that the product is actually solving the needs addressed and gathered during the

requirements phase. During this phase unit testing, integration testing, system testing,

acceptance testing are done.

5) Deployment: After successful testing the product is delivered / deployed to the

customer for their use.

6) Maintenance: Once when the customers starts using the developed system then the

actual problems comes up and needs to be solved from time to time. This process where

the care is taken for the developed product is known as maintenance.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://istqbexamcertification.com/what-is-a-software-testing/

SDLC Model

1. Waterfall Model

2. V-Shaped Model

3. Evolutionary Prototyping Model

4. Spiral Method (SDM)

5. Iterative and Incremental Method

6. Extreme programming (Agile development)

Waterfall Model[RGPV/ JUNE-2011(5)]

This model involves finishing the first phase completely before commencing the next one.

When each phase is completed successfully, it is reviewed to see if the project is on track

and whether it is feasible to continue.

 Requirements – defines needed information, function, behavior, performance and

interfaces.

 Design – data structures, software architecture, interface representations,

we dont take any liability for the notes correctness. http://www.rgpvonline.com

algorithmic details.

 Implementation – source code, database, user documentation, testing.

 Easy to understand, easy to use

 Provides structure to inexperienced staff

 Milestones are well understood

 Sets requirements stability

 Good for management control (plan, staff, track)

 Works well when quality is more important than cost or schedule

Waterfall Strength

 All requirements must be known upfront

 Deliverables created for each phase are considered frozen – inhibits flexibility

 Can give a false impression of progress

 Does not reflect problem-solving nature of software development – iterations of

phases

 Integration is one big bang at the end

 Little opportunity for customer to preview the system (until it may be too late)

Waterfall Deficiencies

 Requirements are very well known

 Product definition is stable

 Technology is understood

 New version of an existing product

V-Shaped Model:

This model focuses on execution of processes in a sequential manner, similar to the

waterfall model but with more importance placed on testing. Testing procedures are

written even before the commencement of writing code. A system plan is generated

before starting the development phase.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

V Shape Strength

 Emphasize planning for verification and validation of the product in early stages of

product development

 Each deliverable must be testable

 Project management can track progress by milestones

 Easy to use

V Shape Weakness

 Emphasize planning for verification and validation of the product in early stages of

product development

 Each deliverable must be testable

 Project management can track progress by milestones

 Easy to use

 Evolutionary Prototyping Model

It refers to the activity of creating prototypes of software applications, for example,

incomplete versions of the software program being developed. It is an activity that can

occur in software development. It used to visualize some component of the software to

limit the gap of misunderstanding the customer requirements by the development team.

This also will reduce the iterations may occur in waterfall approach and hard to be

implemented due to inflexibility of the waterfall approach. So, when the final prototype is

developed, the requirement is considered to be frozen.

It has some types, such as:

· Throwaway prototyping: Prototypes that are eventually discarded rather than becoming

a part of the finally delivered software

securing his information.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Evolutionary prototyping: prototypes that evolve into the final system through iterative

incorporation of user feedback.

Incremental prototyping: The final product is built as separate prototypes. At the end the

separate prototypes are merged in an overall design.

Extreme prototyping: used at web applications mainly. Basically, it breaks down web

development into three phases, each one based on the preceding one. The first phase is a

static prototype that consists mainly of HTML pages. In the second phase, the screens are

programmed and fully functional using a simulated services layer. In the third phase the

services are implemented

The usage

· This process can be used with any software developing life cycle model. While this shall

be focused with systems needs more user interactions. So, the system do not have user

interactions, such as, system does some calculations shall not have prototypes.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Advantages/Disadvantages

· Reduced time and costs, but this can be disadvantage if the developer lose time in

developing the prototypes· Improved and increased user involvement.

· Insufficient analysis· User confusion of prototype and finished system.

· Developer misunderstanding of user objectives.

· Excessive development time of the prototype· Expense of implementing prototyping

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain the software life cycle model in detail. JUNE

2013

7

Q.2 Explain Waterfall model. JUNE

2011

5

Q.3 Define the term component. What are the benefits of

component based software engineering (CBSE).

JUNE

2014,

2013

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-SDLC Model

Unit-01/Lecture-04

Spiral Model-:-[RGPV/JUNE-2013(10),JUNE-2011(5)]

 Adds risk analysis, and 4gl RAD prototyping to the waterfall model

 Each cycle involves the same sequence of steps as the waterfall process model

 Objectives: functionality, performance, hardware/software interface, critical

success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, interface, etc.

 Spiral Quadrant

 Objectives: functionality, performance, hardware/software interface, critical

success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, interface, etc.

 Objectives: functionality, performance, hardware/software interface, critical

success factors, etc.

 Alternatives: build, reuse, buy, sub-contract, etc.

 Constraints: cost, schedule, interface, etc.

Spiral Model Strength

 Provides early indication of insurmountable risks, without much cost

we dont take any liability for the notes correctness. http://www.rgpvonline.com

 Users see the system early because of rapid prototyping tools

 Critical high-risk functions are developed first

 The design does not have to be perfect

 Users can be closely tied to all lifecycle steps

 Early and frequent feedback from users

 Cumulative costs assessed frequently

Spiral Model Weakness

 Time spent for evaluating risks too large for small or low-risk projects

 Time spent planning, resetting objectives, doing risk analysis and prototyping may

be excessive

 The model is complex

 Risk assessment expertise is required

 Spiral may continue indefinitely

 Developers must be reassigned during non-development phase activities

 May be hard to define objective, verifiable milestones that indicate readiness to

proceed through the next iteration

5. Iterative and Incremental Method

It is developed to overcome the weaknesses of the waterfall model. It starts with an

initial planning and ends with deployment with the cyclic interactions in between. The

basic idea behind this method is to develop a system through repeated cycles (iterative)

and in smaller portions at a time (incremental), allowing software developers to take

advantage of what was learned during development of earlier parts or versions of the

system.

It consists of mini waterfalls

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The usage

It is used in shrink-wrap application and large system which built-in small phases or

segments. Also can be used in system has separated components, for example, ERP

system. Which we can start with budget module as first iteration and then we can start

with inventory module and so forth.

Extreme programming (Agile development)

It is based on iterative and incremental development, where requirements and solutions

evolve through collaboration between cross-functional teams.

The usage

It can be used with any type of the project, but it needs more involvement from customer

and to be interactive. Also, it can be used when the customer needs to have some

functional requirement ready in less than three weeks.

Advantages/Disadvantages

· Decrease the time required to avail some system features.· Face to face communication

and continuous inputs from customer representative leaves no space for guesswork.· The

end result is the high quality software in least possible time duration and satisfied

customer · Scalability· Skill of the software developers· Ability of customer to express

user needs· Documentation is done at later stages· Reduce the usability of components.·

Needs special skills for the team.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain the software life cycle model in detail. JUNE

2013

7

Q.2 List several software process paradigms. Explain how both

water fall model & prototype model can be accommodated

in the spiral model?

 JUNE

2014

7

Q.3 Explain why spiral model is considered to be meta data

model.

JUNE

2013

10

Q.4 Discuss the selection process parameters for a life cycle

model.

JUNE

2011

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-Rational Unified Model

Unit-01/Lecture-05

Rational Unified Model:- [RGPVJUNE-2014,2013,2012(7)]

THE UNIFIED APPROACH TO MODELING

The Unified Approach (UA) is the methodology for software development, based on

methodologies by Booch, James Rumbaugh and Jacobson. UA has the following features:

1. Just like Jacobson's model, the UA is also a Use-case driven software development

methodology. In UA to modeling, all the models are built around the use-case

model.

2. UA utilizes a standard set of tools for modeling.

3. The OO analysis is done by utilizing use-cases and object modeling.

4. It favors repositories of reusable classes and emphasizes on maximum reuse.

5. UA follows a layered approach to software development.

6. UA is suitable for different development lifecycles such as Incremental development

and prototyping.

7. UA favors continuous testing throughout the development lifecycle.

Unified process is a refinement of rational unified process. It is an extensible framework

that can be customized for specific projects.

This process divides the development process into four phases:

 Inception

 Elaboration

 Conception

 Transition

UP have the following major characteristics:

 It is use-case driven

 It is architecture-centric

 It is risk focused

 It is iterative and incremental

we dont take any liability for the notes correctness. http://www.rgpvonline.com

The 6 RUP Best Practices

The Unified Process

Inc. Elaboration Construction Trans.

phase phase

iteration

Final release
Release

The end of each

iteration is a

minor release

1.Develop Iteratively

The software requirements specification (SRS) keeps on evolving throughout the

development process and loops are created to add them without affecting the cost of

development.

2.Manage Requirements

The business requirements documentation and project management requirements need

to be gathered properly from the user in order to reach the targeted goal.

3. Use Components

The components of large project which are already tested and are in use can be

conveniently used in other projects. This reuse of components reduces the production

time.

4. Model Visually

Use of Unified modeling language (UML) facilitates the analysis and design of various

components. Diagrams and models are used to represent various components and their

interactions.

5. Verify Quality

Testing and implementing effective project quality management should be a major part of

each and every phase of the project from initiation to delivery (aka the project

management life cycle).

6. Control Changes

Synchronization of various parts of the system becomes all the more challenging when

the parts are being developed by various teams working from different geographic

locations on different development platforms. Hence special care should be taken in this

we dont take any liability for the notes correctness. http://www.rgpvonline.com

direction so that the changes can be controlled.

Advantages of RUP Software Development

1. This is a complete methodology in itself with an emphasis on accurate

documentation.

2. It is proactively able to resolve the project risks associated with the client's evolving

requirements requiring careful change request management.

3. Less time is required for integration as the process of integration goes on

throughout the software development life cycle.

4. The development time required is less due to reuse of components.

5. There is online training and tutorial available for this process.

Disadvantages of RUP Software Development

 1.The team members need to be expert in their field to develop a software under this

 Methodology.

 2. The development process is too complex and disorganized.

 3. On cutting edge projects which utilize new technology, the reuse of components

 will not be possible. Hence the time saving one could have made will be impossible

 to fulfill.

4. Integration throughout the process of software development, in theory sounds a

good thing. But on particularly big projects with multiple development streams it

will only add to the confusion and cause more issues during the stages of testing

S.NO RGPV QUESTIONS Year Marks

Q.1 What are the different phases of unified modeling? JUNE

2012

10

Q.2 Explain the unified approach to software development.

Discuss the merits & demerits of this approach.

JUNE

2013,2014

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:- Difference between process & methodology

Unit-01/Lecture-06

Difference between process & methodology

Processes are probably the easiest to understand since we all work with them daily, even

when we don͛t know it. A process is simply a well defined set of steps and decisions

points for executing a specific task. Well planned and deeply understood processes are

essential to your ability to automate business tasks. This is really where that magic

happens, a process level. Generally speaking, processes are highly repeatable and if it can

be repeated it can be automated (with exceptions or occasional human intervention of

course).

An example of a process would be how you process payments to vendors you work with

and the steps and decisions involved in doing so. When working through processes and

defining them be EXTREMELY detailed, otherwise attempts to automate will end in

futility. Capture every action and decision and outline sub-processes as necessary.

Hopefully that clears up the differences between frameworks, methodologies and

processes. While they appear somewhat hierarchical, and can be, they aren͛t always

necessarily so, particularly in both directions. Frameworks will typically have

methodologies but not always. Methodologies will typically have [multiple] processes

embedded, but some processes will be stand alone.

The real power of combining these things is in developing processes in the context of a

methodology and applying methodologies in the context of a framework and most

importantly, when you utilize all of those things in the context of YOUR business. The

exact same approach won͛t work for every business but every business, no matter how

large or small, can benefit from applying these principles.

software configuration management-:-[RGPV/JUNE-2014(7)]

Software configuration management is referred to as source control, change

management, and version control.

Software configuration management systems are commonly used in software

development groups in which several developers are concurrently working on a common

set of files. If two developers change the same file, that file might be overwritten and

critical code changes lost. Software configuration management systems are designed to

avoid this inherent problem with sharing files in a multiuser environment.

Any software configuration management system creates a central repository to facilitate

file sharing. Each file to be shared must be added to the central repository to create the

we dont take any liability for the notes correctness. http://www.rgpvonline.com

first version of the file. After a file is part of the central repository, users can access and

update it, creating new versions.

Software Configuration Management (SCM) is the overall management of a software

design project as it evolves into a software product or system. This includes technical

aspects of the project, all level of communications, organization, and the control of

modifications changes to the project plan by the programmers during the development

phase. Software Configuration Management is also called Software Control Management.

Changes are inevitable when software is built. A primary goal of software engineering is

to improve the ease with which changes can be made to software. Configuration

management is all about change control. Every software engineer has to be concerned

with how changes made to work products are tracked and propagated throughout a

project. To ensure that quality is maintained the change process must be audited. A

Software Configuration Management (SCM) Plan defines the strategy to be used for

change management.

Software Configuration Items (SCI)

 Computer programs (both source and executable)

 Documentation (both technical and user)

 Data (contained within the program or external to it)

Fundamental Sources of Change

 New business or market conditions dictate changes to product requirements or

business rules

 New stakeholder needs demand modification of data, functionality, or services

delivered by a computer-based system

 Business reorganization causes changes in project priorities or software engineering

team structure

 Budgetary or scheduling constraints cause system to be redefined

Configuration Management System Elements

 Component elements – set of tools coupled within a file management system to

enable access to and management of each SCI

 Process elements – collection of procedures and tasks that define and effective

approach to change management for all stakeholders

 Construction elements – set of tolls that automate the construction of software by

ensure a set of validated components is assembled

 Human elements – team uses a set of tools and process features encompassing other

CM elements

Baselines

 A work product becomes a baseline only after it is reviewed and approved.

 A baseline is a milestone in software development that is marked by the delivery of

we dont take any liability for the notes correctness. http://www.rgpvonline.com

one or more configuration items.

 Once a baseline is established each change request must be evaluated and verified by

a formal procedure before it is processed.

 Baseline work products are place in a project database or repository

SCM Repository Functions

 Data integrity

 Information sharing

 Tool integration

 Data integration

 Methodology enforcement

 Document standardization

SCM Content

 Problem description

 Problem domain information

 Emerging system solution

 Software process rules and instructions

 Project plan, resources, and history

 Organizational content information

SCM Tool Features

 Versioning - control changes to all work products before and after release to

customer

 Dependency tracking and change management - tracking relationships among

multiple versions of work products to enable efficient changes (link management)

 Requirements tracing – depends on link management, provides the ability to track all

work products that result from a specific requirements specification (forward tracing)

and to identify which requirement generated by any given work product (backward

tracing)

 Configuration management – works closely with link management and versioning

facilities to keep track of a series of configurations representing project milestones or

production releases

 Audit trails - establishes additional information about when, where, why, and by

whom changes were made

SCM Process Objectives

1. Identify all items that define the software configuration

2. Manage changes to one or more configuration items

3. Facilitate construction of different versions of a software application

4. Ensure that software quality is maintained as configuration evolves

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Software Configuration Management Tasks

 Identification (tracking multiple versions to enable efficient changes)

 Version control (control changes before and after release to customer)

 Change control (authority to approve and prioritize changes)

 Configuration auditing (ensure changes made properly)

 Reporting (tell others about changes made)

Configuration Object Identification

 To control and manage configuration items, each must be named and managed using

an object-oriented approach

 Basic objects are created by software engineers during analysis, design, coding, or

testing

 Aggregate objects are collections of basic objects and other aggregate objects

 Configuration object attributes: unique name, description, list of resources, and a

realization (a pointer to a work product for a basic object or null for an aggregate

object)

Version Control

 Combines procedures and tools to manage the different versions of configuration

objects created during the software process

 Version control systems require the following capabilities

o Project repository – stores all relevant configuration objects

o Version management capability – stores all versions of a configuration object

(enables any version to be built from past versions)

o Make facility – enables collection of all relevant configuration objects and

construct a specific software version

o Issues (bug) tracking capability – enables team to record and track status of

outstanding issues for each configuration object

 Uses a system modeling approach (template – includes component hierarchy and

component build order, construction rules, verification rules)

Change Control

 Change request is submitted and evaluated to assess technical merit and impact on

the other configuration objects and budget

 Change report contains the results of the evaluation

 Change control authority (CCA) makes the final decision on the status and priority of

the change based on the change report

 Engineering change order (ECO) is generated for each change approved (describes

change, lists the constraints, and criteria for review and audit)

 Object to be changed is checked-out of the project database subject to access control

parameters for the object

 Modified object is subjected to appropriate SQA and testing procedures

 Modified object is checked-in to the project database and version control mechanisms

we dont take any liability for the notes correctness. http://www.rgpvonline.com

are used to create the next version of the software

 Synchronization control is used to ensure that parallel changes made by different

people don͛t overwrite one another

Software Configuration Audit Questions

1. Has the change specified by the ECO been made without modifications?

2. Has a FTR been conducted to assess technical correctness?

3. Was the software process followed and software engineering standards been properly

applied?

4. Do the attributes of the configuration object reflect the change?

5. Have the SCM standards for recording and reporting the change been followed?

6. Were all related SCI's properly updated?

Content Management System

 Establishes a process that acquires existing content, structures it to be presented to

an end-user, and provides for display to the client-side environment

 Collection subsystem

o converts content to displayable format

o organizes content for client-side display

 Management subsystem

o content database

o database capabilities

o configuration management functions

 Publishing subsystem

o static elements

o publication services

o external services

Benefits of software configuration management

If you have not used a software configuration management system or are not that familiar

with the concept, you might wonder whether it is appropriate to use software

configuration management on your project. Test automation is a software development

effort. Every time a test script is created, whether through recording or coding, a file is

generated that contains code. When created, developed, or edited, that code is a valuable

test asset.

A team environment presents the risk of losing functioning code or breaking test scripts

by overwriting files. A software configuration management system offers a way to

overcome this risk. Every time a file changes, a new version is created and the original file

is preserved.

For the team that is new to software configuration management, all of the essential

we dont take any liability for the notes correctness. http://www.rgpvonline.com

features for versioning test scripts are available through the Functional Tester interface.

This integration simplifies the use and adoption of software configuration management.

Software configuration management products

The ClearCase or Rational Team Concert integration for versioning Functional Tester test

assets is specialized and cannot be duplicated with other tools. For this reason, some

ClearCase operations cannot be performed outside Functional Tester.

When you use Functional Tester, the ClearCase or Rational Team Concert operations

appear to be very simple. But a lot is going on behind the scenes. A Functional Tester

script is a collection of files. The complexity of treating several files as a single entity is

hidden because all actions in the Functional Tester user interface are performed on the

script. You do not see the related files anywhere in the user interface. In addition, some

software configuration management operations, such as merging, are very complex.

There is built-in logic to determine the order in which files are merged, and then different

utilities are employed as needed to complete the merge.

S.NO RGPV QUESTIONS Year Marks

Q.1 Explain in detail configuration management. JUNE

2014

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-Safety

Unit-01/Lecture-07

Safety in Software Engineering:-

Software system safety, an element of the total safety and software development

program, cannot be allowed to function independently of the total effort. Both simple

and highly integrated multiple systems are experiencing an extraordinary growth in the

use of computers and software to monitor and/or control safety-critical subsystems or

functions. A software error, design flaw, or the lack of generic safety-critical

requirements can contribute to or cause a system failure or erroneous human decision.

To achieve an acceptable level of safety for software used in critical applications,

software system safety engineering must be given primary emphasis early in the

requirements definition and system conceptual design process.

 Safety-critical software must then receive continuous management emphasis and

engineering analysis throughout the development and operational lifecycles of the

system. Software system safety is directly related to the more critical design aspects

and safety attributes in software and system functionality, whereas software quality

attributes are inherently different and require standard scrutiny and development

rigor. Software safety hazard analysis required for more complex systems where

software is controlling critical functions generally are in the following sequential

categories and are conducted in phases as part of the system safety or safety

engineering process: software safety requirements analysis; software safety design

analyses (top level, detailed design and code level); software safety test analysis, and

software safety change analysis.

Once these "functional" software safety analyses are completed the software

engineering team will know where to place safety emphasis and what functional

threads, functional paths, domains and boundaries to focus on when designing in

software safety attributes to ensure correct functionality and to detect malfunctions,

failures, faults and to implement a host of mitigation strategies to control hazards.

Software security and various software protection technologies are similar to software

safety attributes in the design to mitigate various types of threats vulnerability and

risks. Deterministic software is sought in the design by verifying correct and predictable

behaviour at the system level.

Goals

 Safety consistent with mission requirements, is designed into the software in a

timely, cost effective manner.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Software_development_process

 On complex systems involving many interactions safety-critical functionality

should be identified and thoroughly analyzed before deriving hazards and

design safeguards for mitigations.

 Safety-critical functions lists and preliminary hazards lists should be determined

proactively and influence the requirements that will be implemented in

software.

 Contributing factors and root causes of faults and resultant hazards associated

with the system and its software are identified, evaluated and eliminated or the

risk reduced to an acceptable level, throughout the lifecycle.

 Reliance on administrative procedures for hazard control is minimized.

 The number and complexity of safety critical interfaces is minimized.

 The number and complexity of safety critical computer software components is

minimized.

 Sound human engineering principles are applied to the design of the software-

user interface to minimize the probability of human error.

 Failure modes, including hardware, software, human and system are addressed

in the design of the software.

 Sound software engineering practices and documentation are used in the

development of the software.

 Safety issues and safety attributes are addressed as part of the software testing

effort at all levels.

 Software is designed for human machine interface, ease of maintenance and

modification or enhancement

 Software with safety-critical functionality must be thoroughly verified with

objective analysis and preferably test evidence that all safety requirements have

been met per established criteria.

Open Source Software Development

Open-source software development is the process by which open-source software, or

similar software whose source code is publicly available, is developed. These are

software products available with its source code under an open-source license to study,

change, and improve its design. Examples of some popular open-source software

products are Mozilla Firefox, Google Chromium, Android, LibreOffice and the Apache

OpenOffice Suite. Open-source software development has been a large part of the

creation of the World Wide Web as we know it, with Tim Berners-Lee contributing his

HTML code development as the original platform upon which the internet is now built.

Open-source software development model

Open-source software development can be divided into several phases. The phases

specified here are derived from Sharma et al.[3] A diagram displaying the process-data

structure of open-source software development is shown on the right. In this picture, the

phases of open-source software development are displayed, along with the

corresponding data elements. This diagram is made using the meta-modeling and meta-

process modeling techniques.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Starting an open-source project

There are several ways in which work on an open-source project can start-

1. An individual who senses the need for a project announces the intent to develop a

project in public.

2. A developer working on a limited but working codebase, releases it to the public as

the first version of an open-source program.

3. The source code of a mature project is released to the public.

4. A well-established open-source project can be forked by an interested outside

party.

Eric Raymond observed in his essay The Cathedral and the Bazaar that announcing the

intent for a project is usually inferior to releasing a working project to the public.

It's a common mistake to start a project when contributing to an existing similar project

would be more effective (NIH syndrome). To start a successful project it is very important

to investigate what's already there. The process starts with a choice between the

adopting of an existing project, and the starting of a new project. If a new project is

started, the process goes to the Initiation phase. If an existing project is adopted, the

process goes directly to the Execution phase.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:-Risk Assessment

Unit-01/Lecture-08

Risk Assessment:-[RGPV/JUNE-2012(10),JUNE-2014(5)]

The goal of risk assessment is to prioritize the risks so that attention and resources can

be focused on the more risky items. Risk identification is the first step in risk assessment,

which identifies all the different risks for a particular project. These risks are project-

dependent and identifying them is an exercise in envisioning what can go wrong.

Methods that can aid risk identification include checklists of possible risks, surveys,

meetings and brainstorming, and reviews of plans, processes, and work products.

Checklists of frequently occurring risks are probably the most common tool for risk

identification—most organizations prepare a list of commonly occurring risks for

projects, prepared from a survey of previous projects. Such a list can form the starting

point for identifying risks for the current project.

Based on surveys of experienced project managers, Boehm [11] has produced a list of

the top 10 risk items likely to compromise the success of a software project. Figure

shows some of these risks along with the techniques preferred by management for

managing these risks. Top risks in a commercial software organization can be found in

Figure 4.3: Top risk items and techniques for managing them

The top-ranked risk item is personnel shortfalls. This involves just having fewer people

than necessary or not having people with specific skills that a project might require. Some

of the ways to manage this risk are to get the top talent possible and to match the needs

of the project with the skills of the available personnel. Adequate training, along with

we dont take any liability for the notes correctness. http://www.rgpvonline.com

having some key personnel for critical areas of the project, will also reduce this risk.

The second item, unrealistic schedules and budgets, happens very frequently due to

business and other reasons. It is very common that high-level management imposes a

schedule for a software project that is not based on the characteristics of the project and

is unrealistic. Underestimation may also happen due to inexperience or optimism.

The next few items are related to requirements. Projects run the risk of developing the

wrong software if the requirements analysis is not done properly and if development

begins too early. Similarly, often improper user interface may be developed. This requires

extensive rework of the user interface later or the software benefits are not obtained

because users are reluctant to use it. Gold plating refers to adding features in the

software that are only marginally useful. This adds unnecessary risk to the project

because gold plating consumes resources and time with little return.

Risk identification merely identifies the undesirable events that might take place during

the project, i.e., enumerates the ͞unforeseen͟ events that might occur. It does not specify

the probabilities of these risks materializing nor the impact on the project if the risks

indeed materialize. Hence, the next tasks are risk analysis and prioritization.

In risk analysis, the probability of occurrence of a risk has to be estimated, along with the

loss that will occur if the risk does materialize. This is often done through discussion, using

experience and understanding of the situation, though structured approaches also exist.

Once the probabilities of risks materializing and losses due to materialization of different

risks have been analyzed, they can be prioritized. One approach for prioritization is

through the concept of risk exposure (RE) [11], which is sometimes called risk impact. RE

is defined by the relationship

RE = Prob(UO) * Loss(UO),

where Prob(UO) is the probability of the risk materializing (i.e., undesirable outcome) and

Loss(UO) is the total loss incurred due to the unsatisfactory outcome. The loss is not only

the direct financial loss that might be incurred but also any loss in terms of credibility,

future business, and loss of property or life. The RE is the expected value of the loss due

to a particular risk. For risk prioritization using RE is, the higher the RE, the higher the

priority of the risk item.

Software Risk Management:

Since there could be various risks associated with the software development projects, the

key to identify and manage those risks is to know about the concepts of software risk

management. Many concepts about software risk management could be identified but

the most important are risk index, risk analysis, and risk assessment-

we dont take any liability for the notes correctness. http://www.rgpvonline.com

1.Risk Index: Generally risks are categorized into two factors namely impact of risk

events and probability of occurrence. Risk index is the multiplication of impact and

probability of occurrence. Risk index can be characterized as high, medium, or low

depending upon the product of impact and occurrence. Risk index is very important and

necessary for prioritization of risk.

2. Risk Analysis: There are quite different types of risk analysis that can be used. Basically,

risk analysis is used to identify the high risk elements of a project in software engineering.

Also, it provides ways of detailing the impact of risk mitigation strategies. Risk analysis has

also been found to be most important in the software design phase to evaluate criticality

of the system, where risks are analyzed and necessary counter measures are introduced.

The main purpose of risk analysis is to understand risks in better ways and to verify and

correct attributes. A successful risk analysis includes important elements like problem

definition, problem formulation, data collection.

3. Risk Assessment: Risk assessment is another important case that integrates risk

management and risk analysis. There are many risk assessment methodologies that focus

on different types of risks. Risk assessment requires correct explanations of the target

system and all security. It is important that a risk referent levels like performance, cost,

support and schedule must be defined properly for risk assessment to be useful.

Risk Classification:

The key purpose of classifying risk is to get a collective viewpoint on a group of factors.

These are the types of factors which will help project managers to identify the group that

contributes the maximum risk. A best and most scientific way of approaching risks is to

classify them based on risk attributes. Risk classification is considered as an economical

way of analyzing risks and their causes by grouping similar risks together into classes.

Software risks could be classified as internal or external. Those risks that come from risk

factors within the organization are called internal risks whereas the external risks come

from out of the organization and are difficult to control. Internal risks are project risks,

process risks, and product risks. External risks are generally business with the vendor,

technical risks, customers͛ satisfaction, political stability and so on. In general, there are

many risks in the software engineering which is very difficult or impossible to identify all

of them. Some of most important risks in software engineering project are categorized as

software requirement risks, software cost risks, software scheduling risk, software quality

risks, and software business risks. These risks are explained detail below –

1. SOFTWARE REQUIREMENT RISKS

 Lack of analysis for change of requirements.

 Change extension of requirements

 Lack of report for requirements

 Poor definition of requirements

we dont take any liability for the notes correctness. http://www.rgpvonline.com

 Ambiguity of requirements

 Change of requirements

 Inadequate of requirements

 Impossible requirements

 Invalid requirements

2.SOFTWARE COST RISKS

 Lack of good estimation in projects

 Unrealistic schedule

 The hardware does not work well

 Human errors

 Lack of testing

 Lack of monitoring

 Complexity of architecture

 Large size of architecture

 Extension of requirements change

 The tools does not work well

 Personnel change, Management change, technology change, and environment

change

 Lack of reassessment of management cycle

3.SOFTWARE SCHEDULING RISKS

 Inadequate budget

 Change of requirements and extension of requirements

 Human errors

 Inadequate knowledge about tools and techniques

 Long-term training for personnel

 Lack of employment of manager experience

 Lack of enough skill

 Lack of good estimation in projects

4.SOFTWARE QUALITY RISKS

 Inadequate documentation

 Lack of project standard

 Lack of design documentation

 Inadequate budget

 Human errors

 Unrealistic schedule

 Extension of requirements change

 Poor definition of requirements

 Lack of enough skill

 Lack of testing and good estimation in projects

we dont take any liability for the notes correctness. http://www.rgpvonline.com

 Inadequate knowledge about techniques, programming language, tools, and so on

Strategies for Risk Management:

During the software development process various strategies for risk management could

be identified and defined according to the amount of risk influence. Based upon the

amount of risk influence in software development project, risk strategies could be divided

into three classes namely careful, typical, and flexible, careful risk management strategy is

projected for new and inexperienced organizations whose software development projects

are connected with new and unproven technology; typical risk management strategy is

well-defined as a support for mature organizations with experience in software

development projects and used technologies, but whose projects carry a decent number

of risks; and flexible risk management strategy is involved in experienced software

development organizations whose software development projects are officially defined

and based on proven technologies.

S.NO RGPV QUESTIONS Year Marks

Q.1 What do you mean by risk assessment? Explain

briefly

JUNE 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

UNIT – I

Topic:- Difference between user requirements and specifications

Unit-01/Lecture-09

Difference between user requirements and specifications

This is a blog post I wrote for the intranet at my previous workplace to help influence a

change in thinking in what constitutes ͞requirements͟. Often, business will hand down ͞It

must look like this and must work like this͟ which significantly constrains the design and is

based on a lot of assumptions, competitors͛ products and previous requirements. Plus it

short-circuits any knowledge of technology, trends and patterns that the design and

development team could have contributed.

USER REQUIREMENTS should detail what is needed by users; they should define the

problem, the space within which a solution can be designed.

UI specifications detail a particular solution that can be implemented to meet the

identified requirements.

There should be a clear and traceable relationship between every element of a design and

the requirements.

The requirements and the specification can be in the same document but it should be

clear that the requirements are defined and accepted first and that they are fixed

whereas the solution specified is just one way that the requirements can be met.

Elements of a solution that cannot be traced back to a requirement indicate incomplete

requirements or surplus design.

The following words should typically not be used when discussing user requirements as

they refer to a user interface solution and confuse the purpose of a requirements

document, preempt solutions and constrain the design, possibly excluding the optimal

solution:

button, screen, panel, drop-down, list, scroll, click, tap, calendar, flip out, fold, animated,

swipe, heading, label, line, grid, table, row, column, select, drag and drop, window, resize,

right ĐliĐk, ŵeŶu, sort, ŵap, liŶk, widget, ďox, iĐoŶ, see, hear, touĐh …

This is a confused user requirement:

͞A user can sort the table by any of the columns͟

we dont take any liability for the notes correctness. http://www.rgpvonline.com

Rather, the user requirement might be:

͞A user can opt to view the tabular data in ascending or descending order on any element

of the data͟

And the matching UI specification might be written (or committed straight to wireframes)

as:

͞In every cell of the header row will be two controls visible at all times, one for sorting the

relevant column in ascending order and one for descending order͟

 REFERENCCE

BOOK AUTHOR

PRIORITY

Software

Engineering P,S. Pressman

1

Software

Engineering Pankaj jalote

2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

