
1

UNIT-04

Coding standard and guidelines

UNIT-04/LECTURE-01

Software Coding standard: [RGPV/Jun 2014(7)]

Software coding standards are language-specific programming rules that greatly reduce the

probability of introducing errors into your applications, regardless of which software

development model (iterative, waterfall, extreme programming, and so on) is being used to

create that application.

Software coding standards originated from the intensive study of industry experts who

analyzed how bugs were generated when code was written and correlated these bugs to

specific coding practices. They took these correlations between bugs and coding practices and

came up with a set of rules that when used prevent coding errors from occurring. Coding

standards offer incredible value to software development organizations because they are pre-

packaged automated error prevention practices; they close the feedback loop between a bug

and what must be done to prevent that bug from reoccurring. You don'tt have to write your

own rules to get the benefit of coding standards – the experts have already done it for you.

In a team environment or group collaboration, coding standards ensure uniform coding

practices, reducing oversight errors and the time spent in code reviews. When work is

outsourced to a third-party contractor, having a set of coding standards in place ensures that

the code produced by the contractor meets all quality guidelines mandated by the client

company.

Coding Standards Are NOT merely a way of enforcing naming conventions on your code.

Coding Standards Enforcement IS static analysis of source code for:

 Certain rules and patterns to detect problems automatically

 Based on the knowledge collected over many years by industry experts

 Virtual code review or peer review by industry respected language experts –

AUTOMATICALLY

Previous efforts at standards enforcement include SEI - CMM and ISO 9001. These efforts failed

to deliver on their promise because they created stacks upon stacks of bureaucratic documents.

There was no automation of processes– because of this the cost of implementation

overwhelms the benefit of process implementation.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

How Coding Standards are Classified

Software coding standards are classified by language, usage, and severity levels. Language

specific rules and best coding practices are determined by industry experts in that particular

language. Usage types and severity levels are set by the user.

Language

Parasoft provides coding standards for:

 C and C++ Testing

 Java

 .NET Languages (including C#, VB.NET, ASP.NET and Managed C++)

 SOA and Web (XML, HTML, CSS, JavaScript, JSP, WSDL, etc.)

How the Coding Standards Process is Automated

Coding standards are automated through:

1. Daily usage by developers. Each developer enforces rules every time a class is written

and before the class is checked in to the source code repository.

2. Automated nightly builds. Coding standards are enforced upon all source code modified

during the day by automatically running and testing the code in "batch mode".

Both of these methods verify that each developer adhered to the coding standards. In

conjunction with Parasoft's reporting system, developers can send reports to management on

the current status of their project. This closes the software development lifecycle feedback loop

to ensure that the process is indeed in place and running properly.

Code review

Code review is systematic examination (often as peer review) of computer source code. It is

intended to find and fix mistakes overlooked in the initial development phase, improving both

the overall quality of software and the developers' skills. Reviews are done in various forms

such as pair programming, informal walkthroughs, and formal inspections.

Inspection

 Inspection in software engineering refers to peer review of any work product by trained

individuals who look for defects using a well defined process. An inspection might also be

referred to as a Fagan inspection after Michael Fagan, the creator of a very popular software

inspection process.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://www.parasoft.com/solutions/cpp_solution.jsp?itemId=340
http://www.parasoft.com/solutions/java_solution.jsp?itemId=341
http://www.parasoft.com/solutions/dotnet_solution.jsp?itemId=342
http://www.parasoft.com/solutions/soa_solution.jsp?itemId=319

3

The process

The inspection process was developed by Michael Fagan in the mid-1970s and it has later been

extended and modified.

The process should have entry criteria that determine if the inspection process is ready to

begin. This prevents unfinished work products from entering the inspection process. The entry

criteria might be a checklist including items such as "The document has been spell-checked".

The stages in the inspections process are: Planning, Overview meeting, Preparation, Inspection

meeting, Rework and Follow-up. The Preparation, Inspection meeting and Rework stages might

be iterated.

 Planning: The inspection is planned by the moderator.

 Overview meeting: The author describes the background of the work product.

 Preparation: Each inspector examines the work product to identify possible defects.

 Inspection meeting: During this meeting the reader reads through the work product,

part by part and the inspectors point out the defects for every part.

 Rework: The author makes changes to the work product according to the action plans

from the inspection meeting.

 Follow-up: The changes by the author are checked to make sure everything is correct.

The process is ended by the moderator when it satisfies some predefined exit criteria.

Inspection roles

During an inspection the following roles are used.

 Author: The person who created the work product being inspected.

 Moderator: This is the leader of the inspection. The moderator plans the inspection and

coordinates it.

 Reader: The person reading through the documents, one item at a time. The other

inspectors then point out defects.

 Recorder/Scribe: The person that documents the defects that are found during the

inspection.

 Inspector: The person that examines the work product to identify possible defects.

inspection types

Code review

A code review can be done as a special kind of inspection in which the team examines a sample

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

of code and fixes any defects in it. In a code review, a defect is a block of code which does not

properly implement its requirements, which does not function as the programme intended, or

which is not incorrect but could be improved (for example, it could be made more readable or

its performance could be improved). In addition to helping teams find and fix bugs, code

reviews are useful for both cross-training programmes on the code being reviewed and for

helping junior developers learn new programming techniques.

Peer Reviews

Peer Reviews are considered an industry best-practice for detecting software defects early and

learning about software artifacts. Peer Reviews are composed of software walkthroughs and

software inspections and are integral to software product engineering activities. A collection of

coordinated knowledge, skills, and behaviours facilitates the best possible practice of Peer

Reviews. The elements of Peer Reviews include the structured review process, standard of

excellence product checklists, defined roles of participants, and the forms and reports.

Software inspections are the most rigorous form of Peer Reviews and fully utilize these

elements in detecting defects. Software walkthroughs draw selectively upon the elements in

assisting the producer to obtain the deepest understanding of an artifact and reaching a

consensus among participants. Measured results reveal that Peer Reviews produce an

attractive return on investment obtained through accelerated learning and early defect

detection. For best results, Peer Reviews are rolled out within an organization through a

defined program of preparing a policy and procedure, training practitioners and managers,

defining measurements and populating a database structure, and sustaining the roll out

infrastructure.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain the coding standards of

software engineering

Jun.2014 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

 UNIT-04/LECTURE-02

coding conventions :

coding conventions are a set of guidelines for a specific programming language that

recommend programming style, practices and methods for each aspect of a piece program

written in this language. These conventions usually cover file organization, indentation,

comments, declarations, statements, white space, naming conventions, programming practices,

programming principles, programming rules of thumb, etc. Software programmers are highly

recommended to follow these guidelines to help improve the readability of their source code

and make software maintenance easier. Coding conventions are only applicable to the human

maintainers and peer reviewers of a software project. Conventions may be formalized in a

documented set of rules that an entire team or company follows, or may be as informal as the

habitual coding practices of an individual. Coding conventions are not enforced by compilers. As

a result, not following some or all of the rules has no impact on the executable programs

created from the source code.

Common conventions

 Comment conventions

 Indent style conventions

 Naming conventions

 Programming practices

 Programming principles

 Programming rules of thumb

 Programming style conventions

Rapid application development (RAD)

Software prototyping is the activity of creating prototypes of software applications, i.e.,

incomplete versions of the software program being developed. It is an activity that can occur

in software development and is comparable to prototyping as known from other fields, such

as mechanical engineering or manufacturing.

A prototype typically simulates only a few aspects of, and may be completely different from, the

final product.

Prototyping has several benefits: The software designer and implementer can get valuable

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Prototype
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Prototyping
http://en.wikipedia.org/wiki/Mechanical_engineering
http://en.wikipedia.org/wiki/Manufacturing

6

feedback from the users early in the project. The client and the contractor can compare if the

software made matches the software specification, according to which the software program is

built. It also allows the software engineer some insight into the accuracy of initial project

estimates and whether the deadlines and milestones proposed can be successfully met.

 It refers to a type of software development methodology that uses minimal planning in favor of

rapid prototyping. The "planning" of software developed using RAD is interleaved with writing

the software itself. The lack of extensive pre-planning generally allows software to be written

much faster, and makes it easier to change requirements.

Rapid application development is a software development methodology that involves methods

like iterative development and software prototyping. According to Whitten (2004), it is a merger

of various structured techniques, especially data-driven Information Engineering, with

prototyping techniques to accelerate software systems development.

In rapid application development, structured techniques and prototyping are especially used to

define users' requirements and to design the final system. The development process starts with

the development of preliminary data models and business process models using structured

techniques. In the next stage, requirements are verified using prototyping, eventually to refine

the data and process models. These stages are repeated iteratively; further development results

in "a combined business requirements and technical design statement to be used for

constructing new systems".

RAD approaches may entail compromises in functionality and performance in exchange for

enabling faster development and facilitating application maintenance.

This table contains a high-level summary of some of the major types of RAD and their relative

strengths and weaknesses.

Agile software development (Agile)

Pros
Minimizes feature creep by developing in short intervals resulting in miniature softwar

releasing the product in mini-increments.

Cons

Short iteration may add too little functionality, leading to significant delays in final iteratio

emphasizes real-time communication (preferably face-to-face), using it is problematic f

team distributed system development. Agile methods produce very little written docu

require a significant amount of post-project documentation.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Program_specification
http://en.wikipedia.org/wiki/Milestone

7

Extreme Programming (XP)

Pros
Lowers the cost of changes through quick spirals of new requirements. Most design activity occur

incrementally and on the fly.

Cons

Programmers must work in pairs, which is difficult for some people. No up-front ͞detailed design͟

occurs, which can result in more redesign effort in the long term. The business champion attached to th

project full time can potentially become a single point of failure for the project and a major source o

stress for a team.

Joint application design (JAD)

Pros
Captures the voice of the customer by involving them in the design and development of the application

through a series of collaborative workshops called JAD sessions.

Cons
The client may create an unrealistic product vision and request extensive gold-plating, leading a team t

over- or under-develop functionality.

Lean software development (LD)

Pros
Creates minimalist solutions (i.e., needs determine technology) and delivers less functionality earlier; pe

the policy that 80% today is better than 100% tomorrow.

Cons
Product may lose its competitive edge because of insufficient core functionality and may exhibit poo

overall quality.

Rapid application development (RAD)

Pros
Promotes strong collaborative atmosphere and dynamic gathering of requirements. Business owner

actively participates in prototyping, writing test cases and performing unit testing.

Cons

Dependence on strong cohesive teams and individual commitment to the project. Decision making relies

on the feature functionality team and a communal decision-making process with lesser degree o

centralized PM and engineering authority.

Scrum

Pros

Improved productivity in teams previously paralyzed by heavy ͞process ,͟ ability to prioritize work, use o

backlog for completing items in a series of short iterations or sprints, daily measured progress an

communications.

Cons
Reliance on facilitation by a master who may lack the political skills to remove impediments and deliver

the sprint goal. Due to relying on self-organizing teams and rejecting traditional centralized "process

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

control", internal power struggles can paralyze a team.

Table 1: Pros and Cons of various RAD types

Disadvantages of prototyping

Insufficient analysis: The focus on a limited prototype can distract developers from properly

analyzing the complete project. This can lead to overlooking better solutions, preparation of

incomplete specifications or the conversion of limited prototypes into poorly engineered final

projects that are hard to maintain. Further, since a prototype is limited in functionality it may

not scale well if the prototype is used as the basis of a final deliverable, which may not be

noticed if developers are too focused on building a prototype as a model.

User confusion of prototype and finished system: Users can begin to think that a prototype,

intended to be thrown away, is actually a final system that merely needs to be finished or

polished. (They are, for example, often unaware of the effort needed to add error-checking and

security features which a prototype may not have.) This can lead them to expect the prototype

to accurately model the performance of the final system when this is not the intent of the

developers. Users can also become attached to features that were included in a prototype for

consideration and then removed from the specification for a final system. If users are able to

require all proposed features be included in the final system this can lead to conflict.

Developer misunderstanding of user objectives: Developers may assume that users share their

objectives (e.g. to deliver core functionality on time and within budget), without understanding

wider commercial issues. For example, user representatives attending Enterprise

software (e.g. PeopleSoft) events may have seen demonstrations of "transaction auditing"

(where changes are logged and displayed in a difference grid view) without being told that this

feature demands additional coding and often requires more hardware to handle extra database

accesses. Users might believe they can demand auditing on every field, whereas developers

might think this is feature creep because they have made assumptions about the extent of user

requirements. If the developer has committed delivery before the user requirements were

reviewed, developers are between a rock and a hard place, particularly if user management

derives some advantage from their failure to implement requirements.

Developer attachment to prototype: Developers can also become attached to prototypes they

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Software_maintenance
http://en.wikipedia.org/wiki/Enterprise_software
http://en.wikipedia.org/wiki/Enterprise_software
http://en.wikipedia.org/wiki/PeopleSoft
http://en.wikipedia.org/wiki/Feature_creep

9

have spent a great deal of effort producing; this can lead to problems like attempting to convert

a limited prototype into a final system when it does not have an appropriate underlying

architecture. (This may suggest that throwaway prototyping, rather than evolutionary

prototyping, should be used.)

Excessive development time of the prototype: A key property to prototyping is the fact that it

is supposed to be done quickly. If the developers lose sight of this fact, they very well may try to

develop a prototype that is too complex. When the prototype is thrown away the precisely

developed requirements that it provides may not yield a sufficient increase in productivity to

make up for the time spent developing the prototype. Users can become stuck in debates over

details of the prototype, holding up the development team and delaying the final product.

Expense of implementing prototyping: the start up costs for building a development team

focused on prototyping may be high. Many companies have development methodologies in

place, and changing them can mean retraining, retooling, or both. Many companies tend to just

jump into the prototyping without bothering to retrain their workers as much as they should.

A common problem with adopting prototyping technology is high expectations for productivity

with insufficient effort behind the learning curve. In addition to training for the use of a

prototyping technique, there is an often overlooked need for developing corporate and project

specific underlying structure to support the technology. When this underlying structure is

omitted, lower productivity can often result.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

 UNIT-04/LECTURE-03

Debugging

Debugging is that activity which is performed after executing a successful test case. Debugging

consists of determining the exact nature and location of the suspected error and fixing the error.

Debugging is probably the most difficult activity in software development from a psychological

point of view for the following reasons:

 Debugging is done by the person who developed the software, and it is hard for that

person to acknowledge that an error was made.

 Of all the software-development activities, debugging is the most mentally taxing

because of the way in which most programs are designed and because of the nature of

most programming languages (i.e., the location of any error is potentially any statement

in the program).

 Debugging is usually performed under a tremendous amount of pressure to fix the

suspected error as quickly as possible.

 Compared to the other software-development activities, comparatively little research,

literature, and formal instruction exist on the process of debugging.

Of the two aspects of debugging, locating the error represents about 95% of the activity. Hence,

the rest of this section concentrates on the process of finding the location of an error, given a

suspicion that an error exists, based on the results of a successful test case.

Debugging by Brute Force

The most common and least effective method of program debugging is by "brute force". It

requires little thought and is the least mentally taxing of all the methods. The brute-force

methods are characterized by either debugging with a memory dump; scattering print

statements throughout the program, or debugging with automated debugging tools.

Using a memory dump to try to find errors suffers from the following drawbacks:

 Establishing the correspondence between storage locations and the variables in the

source program is difficult.

 Massive amounts of data, most of which is irrelevant, must be dealt with.

 A dump shows only the static state of the program at only one instant in time. The

dynamics of the program (i.e., state changes over time) are needed to find most errors.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

 The dump is rarely produced at the exact-time of the error. Hence the dump does not

show the program's state at the time of the error.

 No formal procedure exists for finding the cause of an error analyzing a storage dump.

Scattering print statements throughout the program, although often superior to the use of a

dump in that it displays the dynamics of a program and allows one to examine information that

is easier to read, is not much better and exhibits the following shortcomings:

 It is still largely a hit-or-miss method.

 It often results in massive amounts of data to be analyzed.

 It requires changing the program, which can mask the error, alter critical timing or

introduce new errors.

 It is often too costly or even infeasible for real-time software. Debugging with

automated tools also exhibits the shortcomings of hit-or-miss and massive amounts of

data which mist be analyzed. The problem of changing the program however is

circumvented by the use of the automated debugging tool.

The biggest problem with the brute-force methods is that they ignore the most powerful

debugging tool in existence, a well trained and disciplined human brain. Myers suggests that

experimental evidence, both from students and experienced programmers, shows:

 Debugging aids do not assist the debugging processes.

 In terms of the speed and accuracy of finding the error, people who use their brains

rather than a set of "aids" seem to exhibit superior performance.

Hence, the use of brute-force methods is recommended only when all other methods fail or as

a supplement to (not a substitute for) the thought processes described in the subsequent

sections.

Debugging by Induction

Many errors can be found by using a disciplined thought process without ever going near the

computer. One such thought process is induction, where one proceeds from the particulars to

the whole. By starting with the symptoms of the error, possibly in the result of one or more test

cases, and looking for relationships among the symptoms, the error is often uncovered.

The induction process is illustrated in Figure 1 and described by Myers as follows:

 Locate the pertinent data. A major mistake made when debugging a program is failing

to take account of all available data or symptoms about the problems. The first step is

the enumeration of all that is known about what the program did correctly, and what it

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

did incorrectly (i.e., the symptoms that led one to believe that an error exists).

Additional valuable clues are provided by similar, but different, test cases that do not

cause the symptoms to appear.

 Organize the data. Remembering that induction implies that one is progressing from the

particulars to the general, the second step is the structuring of the pertinent data to

allow one to observe patterns, of particular importance is the search for contradictions

(i.e., "the errors occurs only when the pilot perform a left turn while climbing"). A

particularly useful organizational technique that can be used to structure the available

data is shown in the following table. The "What" boxes list the general symptoms, the

"Where" boxes describe where the symptoms were observed, the "When" boxes list

anything that is known about the times that the symptoms occur, and the "To What

Extent" boxes describes the scope and magnitude of the symptoms. Notice the "Is" and

"Is Not" columns. They describe the contradictions that may eventually lead to a

hypothesis about the error.

 Devise a hypothesis. The next steps are to study the relationships among the clues and

devise, using the patterns that might be visible in the structure of the clues, one or more

hypotheses about the cause of the error. If one cannot devise a theory, more data are

necessary, possibly obtained by devising and executing additional test cases. If multiple

theories seem possible, the most probable one is selected first.

 Prove the hypothesis. A major mistake at this point, given the pressures under which

debugging is usually performed, is skipping this step by jumping to conclusions and

attempting to fix the problem. However, it is vital to prove the reasonableness of the

hypothesis before proceeding. A failure to do this often results in the fixing of only a

symptom of the problem, or only a portion of the problem. The hypothesis is proved by

comparing it to the original clues or data, making sure that this hypothesis completely

explains the existence of the clues. If it does not, either the hypothesis is invalid, the

hypothesis is incomplete, or multiple errors are present.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

Figure 1. Inductive Debugging Process

Debugging By Deduction

An alternate thought process, that of deduction, is a process of proceeding from some general

theories or premises, using the processes of elimination and refinement, to arrive at a

conclusion. This process is illustrated in Figure 2 and also described by Myers as follows:

 Enumerate the possible causes or hypotheses. The first step is to develop a list of all

conceivable causes of the error. They need not be complete explanations; they are

merely theories through which one can structure and analyze the available data.

 Use the data to eliminate possible causes. By a careful analysis of the data, particularly

by looking for contradictions (the previous table could be used here), one attempts to

eliminate all but one of the possible causes. If all are eliminated, additional data are

needed (e.g., by devising additional test cases) to devise new theories. If more than one

possible cause remains, the most probable cause (the prime hypothesis) is selected first.

 Refine the remaining hypothesis. The possible cause at this point might be correct, but

it is unlikely to he specific enough to pinpoint the error. Hence, the next step is to use

the available clues to refine the theory to something more specific.

 Prove the remaining hypothesis. This vital step is identical to the fourth step in the

induction method.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Figure 2. Deductive Debugging Process

Debugging by Backtracking

For small programs, the method of backtracking is often used effectively in locating errors. To

use this method, start at the place in the program where an incorrect result was produced and

go backwards in the program one step at a time, mentally executing the program in reverse

order, to derive the state (or values of all variables) of the program at the previous step.

Continuing in this fashion, the error is localized between the points where the state of the

program was what was expected and the first point where the state was not what was

expected.

Debugging by Testing

The use of additional test cases is another very powerful debugging method which is often used

in conjunction with the induction method to obtain information needed to generate a

hypothesis and/or to prove a hypothesis and with the deduction method to eliminate suspected

causes, refine the remaining hypothesis, and/or prove a hypothesis.

The test cases for debugging differ from those used for integration and testing in that they are

more specific and are designed to explore a particular input domain or internal state of the

program. Test cases for integration and testing tend to cover many conditions in one test,

whereas test cases for debugging tend to cover only one or a very few conditions. The former

are designed to detect the error in the most efficient manner whereas the latter are designed to

isolate the error most efficiently.

Debugging Guidelines (Error Locating)

As was the case for the testing guidelines, many of these debugging guidelines is intuitively

obvious, yet they often forgotten or overlooked. The following guidelines are suggested by

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

Myers to assist in locating errors.

Debugging is a problem solving process. The most effective method of debugging is a mental

analysis of the information associated with the error's symptoms. In efficient program debugger

should be able to pinpoint most errors without going near a computer.

If you reach an impasse, sleep on it.

The human subconscious is a potent problem-solver. What we often refer to as inspiration is

simply the subconscious mind working on a problem when the conscious mind is working on

something else, such as eating, walking, or watching a movie. If you cannot locate an error in a

reasonable amount of time (perhaps 30 minutes for a small program, a few hours for a large

one), drop it and work on something else, since your thinking efficiency is about to collapse

anyway. After "forgetting" about the problem for a while, either your subconscious mind will

have solved the problem, or your conscious mind will be clear for a fresh examination of the

symptoms.

If you reach an impasse, describe the problem to someone else.

By doing so, you will probably discover something new. In fact, it is often the case that by simply

describing the problem to a good listener, you will suddenly see the solution without any

assistance from the listener.

Use debugging tools only as a second resort.

And then, use them as an adjunct to, rather than as a substitute for, thinking. 15 noted earlier in

this section, debugging tools, such as dumps and traces, represent a haphazard approach to

debugging. Experiments show that people who shun such tools, even when they are debugging

problems that are unfamiliar to them, tend to be more successful than people who use the

tools.

Avoid experimentation.

Use it only as a last resort. The most common mistake made by novice debuggers is attempting

to solve a problem by making experimental changes to the program. This totally haphazard

approach cannot even be considered debugging; it represents an act of blind hope. Not only

does it have a miniscule chance of success, but it often compounds the problem by adding new

errors to the program.

Debugging Guidelines (Error Repairing)

The following guidelines for fixing or repairing the program after the error is located are also

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

suggested by Myers.

Where there is one bug, there is likely to be another.

When one finds an error in a section of a program, the probability of the existence of another

error in that section is higher. When repairing an error, examine its immediate vicinity for

anything else that looks suspicious.

Fix the error, not just a symptom of it.

Another common failing is repairing the symptoms of the error, or just one instance of the error,

rather than the error itself. If the proposed correction does not match all the clues about the

error, one may be fixing only a part of the error.

The probability of the fix being correct is not 100%.

Tell this to someone, and of course he would agree, but tell it to someone in the process of

correcting an error, and one often gets a different reaction (e.g., "Yes, in most cases, but this

correction is so minor that it just has to work"). Code that is added to a program to fix an error

can never be assumed correct. Statement for statement, corrections are much more error prone

than the original code in the program. One implication is that error corrections must be tested,

perhaps more rigorously than the original program.

The probability of the fix being correct drops as the size of the program increases.

Experience has shown that the ratio of errors due to incorrect fixes versus original errors

increases in large programs. In one widely used large program, one of every six new errors

discovered was an error in a prior correction to the program.

Beware of the possibility that an error correction creates a new error.

Not only does one have to worry about incorrect corrections, but one has to worry about a

seemingly valid correction having an undesirable side effect, thus introducing a new error. Not

only is there a probability that a fix will be invalid, but there is also a real probability that a fix

will introduce a new error. One implication is that not only does the error situation have to be

tested after the correction is make, but one must also perform regression testing to determine

if a new error has been introduced.

The process of error repair should put one back temporarily in the design phase.

One should realize that error correction is a form of program design. Given the error-prone

nature of corrections, common sense says that whatever procedures, methodologies, and

formalism were used in the design process should also apply to the error-correction process.

For instance, if the project rationalized that code inspections were desirable, then it must be

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

doubly important that they be used after correcting an error.

Change the source code, not the object code.

When debugging large systems, particularly a system written in an assembly language,

occasionally there is the tendency to correct an error by making an immediate change to the

object code, with the intention of changing the source program later. Two problems associated

with this approach are (l) it is usually a sign that "debugging by experimentation" is being

practiced, and (2) the object code and source program are now out of synchronization, meaning

that the error could easily surface again when the program is recompiled or reassembled.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

 UNIT-04/LECTURE-04

Software Testing Strategy: [RGPV/June 2014,2013(7),June 2012(10)]

A test strategy is an outline that describes the testing approach of the software development

cycle. It is created to inform project managers, testers, and developers about some key issues of

the testing process. This includes the testing objective, methods of testing new functions, total

time and resources required for the project, and the testing environment.

Test strategies describe how the product risks of the stakeholders are mitigated at the test-level,

which types of test are to be performed, and which entry and exit criteria apply. They are

created based on development design documents. System design documents are primarily used

and occasionally, conceptual design documents may be referred to. Design documents describe

the functionality of the software to be enabled in the upcoming release. For every stage of

development design, a corresponding test strategy should be created to test the new feature

sets.

Strategic Approach to Software Testing

 Many software errors are eliminated before testing begins by conducting effective technical

reviews

 Testing begins at the component level and works outward toward the integration of the

entire computer-based system.

 Different testing techniques are appropriate at different points in time.

 The developer of the software conducts testing and may be assisted by independent test

groups for large projects.

 Testing and debugging are different activities.

 Debugging must be accommodated in any testing strategy.

Verification and Validation: [RGPV/June2012,2011(10)]

 Make a distinction between verification (are we building the product right?) and validation

(are we building the right product?)

 Software testing is only one element of Software Quality Assurance (SQA)

 Quality must be built in to the development process, you can’t use testing to add quality

after the fact

we dont take any liability for the notes correctness. http://www.rgpvonline.com

http://en.wikipedia.org/wiki/Software_development_process
http://en.wikipedia.org/wiki/Software_development_process

19

Organizing for Software Testing

 The role of the Independent Test Group (ITG) is to remove the conflict of interest inherent

when the builder is testing his or her own product.

 Misconceptions regarding the use of independent testing teams

o The developer should do no testing at all

o Software is tossed ͞over the wall͟ to people to test it mercilessly

o Testers are not involved with the project until it is time for it to be tested

 The developer and ITGC must work together throughout the software project to ensure that

thorough tests will be conducted

Software Testing Strategy

 Unit Testing – makes heavy use of testing techniques that exercise specific control paths to

detect errors in each software component individually

 Integration Testing – focuses on issues associated with verification and program

construction as components begin interacting with one another

 Validation Testing – provides assurance that the software validation criteria (established

during requirements analysis) meets all functional, behavioral, and performance

requirements

 System Testing – verifies that all system elements mesh properly and that overall system

function and performance has been achieved

Strategic Testing Issues

 Specify product requirements in a quantifiable manner before testing starts.

 Specify testing objectives explicitly.

 Identify categories of users for the software and develop a profile for each.

 Develop a test plan that emphasizes rapid cycle testing.

 Build robust software that is designed to test itself.

 Use effective formal reviews as a filter prior to testing.

 Conduct formal technical reviews to assess the test strategy and test cases.

 Develop a continuous improvement approach for the testing process.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

Unit Testing[RGPV/ June 2011(10)]

 Module interfaces are tested for proper information flow.

 Local data are examined to ensure that integrity is maintained.

 Boundary conditions are tested.

 Basis (independent) path are tested.

 All error handling paths should be tested.

 Drivers and/or stubs need to be developed to test incomplete software.

Integration Testing: [RGPV/June 2013(7),June 2012(10)]

 Sandwich testing uses top-down tests for upper levels of program structure coupled with

bottom-up tests for subordinate levels

 Testers should strive to indentify critical modules having the following requirements

 Overall plan for integration of software and the specific tests are documented in a test

specification

Integration Testing Strategies

 Top-down integration testing

1. Main control module used as a test driver and stubs are substitutes for components directly

subordinate to it.

2. Subordinate stubs are replaced one at a time with real components (following the depth-

first or breadth-first approach).

3. Tests are conducted as each component is integrated.

4. On completion of each set of tests and other stub is replaced with a real component.

5. Regression testing may be used to ensure that new errors not introduced.

 Bottom-up integration testing

1. Low level components are combined into clusters that perform a specific software function.

2. A driver (control program) is written to coordinate test case input and output.

3. The cluster is tested.

4. Drivers are removed and clusters are combined moving upward in the program structure.

 Regression testing – used to check for defects propagated to other modules by changes

made to existing program
we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

1. Representative sample of existing test cases is used to exercise all software functions.

2. Additional test cases focusing software functions likely to be affected by the change.

3. Tests cases that focus on the changed software components.

 Smoke testing

1. Software components already translated into code are integrated into a build.

2. A series of tests designed to expose errors that will keep the build from performing its

functions are created.

3. The build is integrated with the other builds and the entire product is smoke tested daily

(either top-down or bottom integration may be used).

General Software Test Criteria

 Interface integrity – internal and external module interfaces are tested as each module or

cluster is added to the software

 Functional validity – test to uncover functional defects in the software

 Information content – test for errors in local or global data structures

 Performance – verify specified performance bounds are tested

Object-Oriented Test Strategies

 Unit Testing – components being tested are classes not modules

 Integration Testing – as classes are integrated into the architecture regression tests are run

to uncover communication and collaboration errors between objects

 Systems Testing – the system as a whole is tested to uncover requirement errors

Object-Oriented Unit Testing

 smallest testable unit is the encapsulated class or object

 similar to system testing of conventional software

 do not test operations in isolation from one another

 driven by class operations and state behavior, not algorithmic detail and data flow across

module interface

Object-Oriented Integration Testing

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

 focuses on groups of classes that collaborate or communicate in some manner

 integration of operations one at a time into classes is often meaningless

 thread-based testing – testing all classes required to respond to one system input or event

 use-based testing – begins by testing independent classes (classes that use very few server

classes) first and the dependent classes that make use of them

 cluster testing – groups of collaborating classes are tested for interaction errors

 regression testing is important as each thread, cluster, or subsystem is added to the system

WebApp Testing Strategies

1. WebApp content model is reviewed to uncover errors.

2. Interface model is reviewed to ensure all use-cases are accommodated.

3. Design model for WebApp is reviewed to uncover navigation errors.

4. User interface is tested to uncover presentation errors and/or navigation mechanics

problems.

5. Selected functional components are unit tested.

6. Navigation throughout the architecture is tested.

7. WebApp is implemented in a variety of different environmental configurations and the

compatibility of WebApp with each is assessed.

8. Security tests are conducted.

9. Performance tests are conducted.

10. WebApp is tested by a controlled and monitored group of end-users (looking for content

errors, navigation errors, usability concerns, compatibility issues, reliability, and

performance).

Validation Testing

 Focuses on visible user actions and user recognizable outputs from the system

 Validation tests are based on the use-case scenarios, the behavior model, and the event

flow diagram created in the analysis model

o Must ensure that each function or performance characteristic conforms to its

specification.

o Deviations (deficiencies) must be negotiated with the customer to establish a means for

resolving the errors.

 Configuration review or audit is used to ensure that all elements of the software

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

configuration have been properly developed, cataloged, and documented to allow its

support during its maintenance phase.

Acceptance Testing

 Making sure the software works correctly for intended user in his or her normal work

environment.

 Alpha test – version of the complete software is tested by customer under the supervision

of the developer at the developer’s site

 Beta test – version of the complete software is tested by customer at his or her own site

without the developer being present

System Testing: [RGPV/June2013(7)]

 Series of tests whose purpose is to exercise a computer-based system

 The focus of these system tests cases identify interfacing errors

 Recovery testing – checks the system’s ability to recover from failures

 Security testing – verifies that system protection mechanism prevent improper penetration

or data alteration

 Stress testing – program is checked to see how well it deals with abnormal resource

demands (i.e. quantity, frequency, or volume)

 Performance testing – designed to test the run-time performance of software, especially

real-time software

 Deployment (or configuration) testing – exercises the software in each of the environment

in which it is to operate

we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

S.NO RGPV QUESTION YEAR MARKS

Q.1 What are testing principles the

software engineer must apply

while performing the software

testing?

Jun.2014, 2013 7

Q.2 Explain the integration testing

process & System Testing

processes & discuss their

outcomes.

Jun.2013 7

Q.3 Discuss software testing

strategies. Differentiate

between verification &

validation.

Jun.2012 10

Q.4 Describe verification &

validation criteria for software.

Jun.2011 10

Q.5 Describe unit testing &

integration testing. How test

plans are generated?

June 2011 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

 UNIT-04/LECTURE-05

Black Box Testing[RGPV/June 2014(7),June 2011(10)]

The technique of testing without having any knowledge of the interior workings of the

application is Black Box testing. The tester is oblivious to the system architecture and does not

have access to the source code. Typically, when performing a black box test, a tester will

interact with the system's user interface by providing inputs and examining outputs without

knowing how and where the inputs are worked upon.

Advantages Disadvantages

 Well suited and efficient for large code

segments.

 Code Access not required.

 Clearly separates user's perspective

from the developer's perspective

through visibly defined roles.

 Large numbers of moderately skilled

testers can test the application with no

knowledge of implementation,

programming language or operating

systems.

 Limited Coverage since only a selected

number of test scenarios are actually

performed.

 Inefficient testing, due to the fact that

the tester only has limited knowledge

about an application.

 Blind Coverage, since the tester cannot

target specific code segments or error

prone areas.

 The test cases are difficult to design.

White Box Testing

White box testing is the detailed investigation of internal logic and structure of the code. White

box testing is also called glass testing or open box testing. In order to perform white box testing

on an application, the tester needs to possess knowledge of the internal working of the code.

The tester needs to have a look inside the source code and find out which unit/chunk of the

code is behaving inappropriately.

Advantages Disadvantages

 As the tester has knowledge of the

source code, it becomes very easy to

find out which type of data can help in

testing the application effectively.

 It helps in optimizing the code.

 Extra lines of code can be removed

which can bring in hidden defects.

 Due to the tester's knowledge about

the code, maximum coverage is

attained during test scenario writing.

 Due to the fact that a skilled tester is

needed to perform white box testing,

the costs are increased.

 Sometimes it is impossible to look into

every nook and corner to find out

hidden errors that may create

problems as many paths will go

untested.

 It is difficult to maintain white box

testing as the use of specialized tools

like code analyzers and debugging tools

are required.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

Grey Box Testing

Grey Box testing is a technique to test the application with limited knowledge of the internal

workings of an application. In software testing, the term the more you know the better carries a

lot of weight when testing an application.

Mastering the domain of a system always gives the tester an edge over someone with limited

domain knowledge. Unlike black box testing, where the tester only tests the application's user

interface, in grey box testing, the tester has access to design documents and the database.

Having this knowledge, the tester is able to better prepare test data and test scenarios when

making the test plan.

Advantages Disadvantages

 Offers combined benefits of black box

and white box testing wherever

possible.

 Grey box testers don't rely on the

source code; instead they rely on

interface definition and functional

specifications.

 Based on the limited information

available, a grey box tester can design

excellent test scenarios especially

around communication protocols and

data type handling.

 The test is done from the point of view

of the user and not the designer.

 Since the access to source code is not

available, the ability to go over the

code and test coverage is limited.

 The tests can be redundant if the

software designer has already run a

test case.

 Testing every possible input stream is

unrealistic because it would take an

unreasonable amount of time;

therefore, many program paths will go

untested.

Black Box vs. Grey Box vs. White Box

S.N. Black Box Testing Grey Box Testing White Box Testing

1

The Internal Workings of an

application are not required

to be known

Somewhat knowledge of the

internal workings are known

Tester has full knowledge of

the Internal workings of the

application

2

Also known as closed box

testing, data driven testing

and functional testing

Another term for grey box

testing is translucent testing

as the tester has limited

knowledge of the insides of

the application

Also known as clear box

testing, structural testing or

code based testing

3

Performed by end users and

also by testers and

developers

Performed by end users and

also by testers and

developers

Normally done by testers

and developers

4

Testing is based on external

expectations - Internal

behavior of the application is

unknown

Testing is done on the basis

of high level database

diagrams and data flow

diagrams

Internal workings are fully

known and the tester can

design test data accordingly

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

5
This is the least time

consuming and exhaustive

Partly time consuming and

exhaustive

The most exhaustive and

time consuming type of

testing

6
Not suited to algorithm

testing

Not suited to algorithm

testing
Suited for algorithm testing

7
This can only be done by trial

and error method

Data domains and Internal

boundaries can be tested, if

known

Data domains and Internal

boundaries can be better

tested

S.NO RGPV QUESTION YEAR MARKS

Q.1 What is black box testing? It is

necessary to perform this?

Explain various test activities.

Jun.2014

7

 we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

 UNIT-04/LECTURE-06

Cyclomatic complexity

is a software metric that provides a quantitative measure of the logical complexity of a program.

When used in the context of a basis path testing method, the value computed for Cyclomatic

complexity defines the number for independent paths in the basis set of a program and

provides us an upper bound for the number of tests that must be conducted to ensure that all

statements have been executed at least once.

An independent path is any path through the program that introduces at least one new set of

processing statements or a new condition.

Computing Cyclomatic Complexity: Cyclomatic complexity has a foundation in graph theory and

provides us with extremely useful software metric. Complexity is computed in one of the three

ways:

1. The number of regions of the flow graph corresponds to the Cyclomatic complexity.

2. Cyclomatic complexity, V(G), for a flow graph, G is defined as

V (G) = E-N+2P Where E, is the number of flow graph edges, N is the number of flow graph

nodes, P is independent component.

3. Cyclomatic complexity, V (G) for a flow graph, G is also defined as:

V (G) = Pie+1 where Pie is the number of predicate nodes contained in the flow graph G.

4. Graph Matrices: The procedure for deriving the flow graph and even determining a set of

basis paths is amenable to mechanization. To develop a software tool that assists in basis path

testing, a data structure, called a graph matrix can be quite useful.

A Graph Matrix is a square matrix whose size is equal to the number of nodes on the flow

graph. Each row and column corresponds to an identified node, and matrix entries correspond

to connections between nodes. The connection matrix can also be used to find the cyclomatic

complexity

we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

Converting Code to Graph

5

Converting Code to Graph

if expression1 then

statement2

else

statement3

end if

statement4

switch expr1

case 1:

statement2

case 2:

statm3

case 3:

statm4

end switch

statm5

(a)

(b)

do

statement1

while expr2

end do

statement3

(c)

CODE FLOWCHART GRAPH

T F
expr1

?

statm4

statm2 statm3

2

1 3
expr1

?

statm5

statm3statm2 statm4

n1

n2 n3

n4

n1

n2 n4

n5

n3

T

F

expr2

?

statm3

statm1
n1

n2

n3

For a strongly connected graph:

Create a virtual edge

to connect the END node

to the BEGIN node

Paths in Graphs

• A graph is strongly connected if for any two nodes x, y there is a path from x to y and

vice versa

• A path is represented as an n-element vector where n is the number of edges

 <฀, ฀, …, ฀>

• The i-th position in the vector is the number of occurrences of edge i in the path

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

Example Paths

if expression1 then

statement2

end if

do

statement3

while expr4

end do

if expression5 then

statement6

end if

statement7

n1

n3

n2

n4

n5

n7

n6

e1

e2

e3

e4 e5

e6

e7

e8

e9

Paths:

P1 = e1, e2, e4, e6, e7, e8

P2 = e1, e2, e4, e5, e4, e6, e7, e8

P3 = e3, e4, e6, e7, e8, e10

P4 = e6, e7, e8, e10, e3, e4

P5 = e1, e2, e4, e6, e9, e10

P6 = e4, e5

P7 = e3, e4, e6, e9, e10

P8 = e1, e2, e4, e5, e4, e6, e9, e10

1, 1, 0, 1, 0, 1, 1, 1, 0, 0

1, 1, 0, 2, 1, 1, 1, 1, 0, 0

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

1, 1, 0, 1, 0, 1, 0, 0, 1, 1

0, 0, 0, 1, 1, 0, 0, 0, 0, 0

0, 0, 1, 1, 0, 1, 0, 0, 1, 1

1, 1, 0, 2, 1, 1, 0, 0, 1, 1

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
1

0

e10

NOTE: A path does not need to start in node n1 and

does not need to begin and end at the same node.

E.g.,

 Path P4 starts (and ends) at node n4

 Path P1 starts at node n1 and ends at node n7

Paths in Graphs (2)

• A circuit is a path that begins and ends at the same node

– e.g., P3 = <e3, e4, e6, e7, e8, e10> begins and ends at node n1

– P6 = <e4, e5> begins and ends at node n3

• A cycle is a circuit with no node (other than the starting node) included more than once

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

Example Circuits & Cycles

if expression1 then

statement2

end if

do

statement3

while expr4

end do

if expression5 then

statement6

end if

statement7

n1

n3

n2

n4

n5

n7

n6

e1

e2

e3

e4 e5

e6

e7

e8

e9

Cycles:

P3 = e3, e4, e6, e7, e8, e10

P5 = e1, e2, e4, e6, e9, e10

P6 = e4, e5

P7 = e3, e4, e6, e9, 10

e10

Circuits:

P3 = e3, e4, e6, e7, e8, e10

P4 = e6, e7, e8, e10, e3, e4

P5 = e1, e2, e4, e6, e9, e10

P6 = e4, e5

P7 = e3, e4, e6, e9, 10

P8 = e1, e2, e4, e5, e4, e6, e9, e10

P9 = e3, e4, e5, e4, e6, e9, 10

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

1, 1, 0, 1, 0, 1, 0, 0, 1, 1

0, 0, 0, 1, 1, 0, 0, 0, 0, 0

0, 0, 1, 1, 0, 1, 0, 0, 1, 1

1, 1, 0, 2, 1, 1, 0, 0, 1, 1

0, 0, 1, 2, 1, 1, 0, 0, 1, 1

e
1

e
2

e
3

e
4

e
5

e
6

e
7

e
8

e
9

e
1

0

Linearly Independent Paths

• A path p is said to be a linear combination of paths p1, …, pn if there are integers a1, …, an

such that p = aipi

• A set of paths is linearly independent if no path in the set is a linear combination of any

other paths in the set

• A basis set of cycles is a maximal linearly independent set of cycles

– In a graph with e edges and n nodes, the basis has e  n + 1 cycles

• Every path is a linear combination of basis cycles

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

Baseline method for finding the basis set of cycles

• Start at the source node

• Follow the leftmost path until the sink node is reached

• Repeatedly retrace this path from the source node, but change decisions at every node

with out-degree ≥2, starting with the decision node lowest in the path

Linearly Independent Paths

if expression1 then

statement2

end if

do

statement3

while expr4

end do

if expression5 then

statement6

end if

statement7

n1

n3

n2

n4

n5

n7

n6

e1

e2

e3

e4 e5

e6

e7

e8

e9

V(G) = e – n + 2 = 9 – 7 + 2 = 4

EXAMPLE #2: 2P3 – P5 + P6 =

2P3 { 0, 0, 2, 2, 0, 2, 2, 2, 0, 2}

– P5 { 1, 1, 0, 1, 0, 1, 0, 0, 1, 1}

___ {-1,-1, 2, 1, 0, 1, 2, 2,-1, 1}

+ P6 { 0, 0, 0, 1, 1, 0, 0, 0, 0, 0}

= P? {-1,-1, 2, 2, 1, 1, 2, 2,-1, 1}

EXAMPLE #1: P5 + P6 = P8

P5 {1, 1, 0, 1, 0, 1, 0, 0, 1, 1}

+ P6 {0, 0, 0, 1, 1, 0, 0, 0, 0, 0}

= P8 {1, 1, 0, 2, 1, 1, 0, 0, 1, 1}

Cycles:

P3 = e3, e4, e6, e7, e8, e10

P5 = e1, e2, e4, e6, e9, e10

P6 = e4, e5

P7 = e3, e4, e6, e9, 10

e10

Paths:

P1 = e1, e2, e4, e6, e7, e8

P2 = e1, e2, e4, e5, e4, e6, e7, e8

P3 = e3, e4, e6, e7, e8, e10

P4 = e6, e7, e8, e10, e3, e4

P5 = e1, e2, e4, e6, e9, e10

P6 = e4, e5

P7 = e3, e4, e6, e9, 10

P8 = e1, e2, e4, e5, e4, e6, e9, e10

1, 1, 0, 1, 0, 1, 1, 1, 0, 0

1, 1, 0, 2, 1, 1, 1, 1, 0, 0

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

0, 0, 1, 1, 0, 1, 1, 1, 0, 1

1, 1, 0, 1, 0, 1, 0, 0, 1, 1

0, 0, 0, 1, 1, 0, 0, 0, 0, 0

0, 0, 1, 1, 0, 1, 0, 0, 1, 1

1, 1, 0, 2, 1, 1, 0, 0, 1, 1
e

1
e

2
e

3
e

4
e

5
e

6
e

7
e

8
e

9
e

1
0

Or, if we count e10, then e – n + 1 = 10 – 7 + 1 = 4

Unit Testing: Path Coverage

– Finds the number of distinct paths through the program to be traversed at least

once

• Minimum number of tests necessary to cover all edges is equal to the number of

we dont take any liability for the notes correctness. http://www.rgpvonline.com

33

independent paths through the control-flow graph

Issues (1)

= CC =

Cyclomatic complexity (CC) remains the same for a linear sequence of
statements regardless of the sequence length
—insensitive to complexity contributed by the multitude of statements

Single statement: Two (or more) statements:

statement

stat-1

stat-2

Issues (2)

= CC =
T

F

expr

?

T F
expr

?

Optional action versus alternative choices —
the latter is psychologically more difficult

Optional action: Alternative choices:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

34

Issues (3)

= CC =
T

F

A ?

D

T
A || D ?

Simple condition: Compound condition:

if (A) then D; if (A OR B) then D;

BUT, compound condition can be written
as a nested IF:

if (A) then D;

else if (B) then D;

F

T
A ?

D T

F

B ?

D

F

Issues (4)

= CC =

Counting a switch statement:
—as a single decision

proposed by W. J. Hansen, “Measurement of program complexity by the pair (cyclomatic number, operator count),”
SIGPLAN Notices, vol.13, no.3, pp.29-33, March 1978.

—as log2(N) relationship
proposed by V. Basili and R. Reiter, “Evaluating automatable measures for software development,”� Proceedings of the
IEEE Workshop on Quantitative Software Models for Reliability, Complexity and Cost, pp.107-116, October 1979.

Switch/Case statement: N1 predicates:

T expr=1

?

statm1 T expr=2

?

statm2

F

2

1 N
expr

?

statm2statm1 statmN

T expr=N

?

statmN

F

we dont take any liability for the notes correctness. http://www.rgpvonline.com

35

CC for Modular Programs (2)

V = e – n + 2

= 12 – 11 + 2 = 3

Intuitive expectation:

Modularization should not increase complexity

n1

n2

n7

n3

n4 n5

n6

n0

n8

n1

n2

n7

n3

n4 n5

n6

n0

n8

n9

CALL A

A:

V = e – n + 2p

= 10 – 10 + 2 x 2 = 4

Issues (5)

T F
expr1

?

T F
expr2

?

T F
expr2

?

T F
expr1

?

= CC =

But, it is known that people find nested decisions more difficult …

Two sequential decisions: Two nested decisions:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

36

19

CC for Modular Programs (1)

V = e – n + 2

= 12 – 11 + 2 = 3

Adding a sequential node

does not change CC:

n1

n2

n7

n3

n4 n5

n6

n0

n8

n1

n2

n7

n3

n4 n5

n6

n0

n8

n9'

n9"

Alternative CC Measures

• Given p connected components of a graph:

– V(G) = e – n + 2p (1)

– VLI(G) = e – n + p + 1 (2)

– Eq. (2) is known as linearly-independent cyclomatic complexity

– VLI does not change when program is modularized into p modules

we dont take any liability for the notes correctness. http://www.rgpvonline.com

37

CC for Modular Programs (3)

V = e – n + 2

= 12 – 11 + 2 = 3

VLI = e – n + p + 1

= 12 – 11 + 1 + 1 = 3

Intuitive expectation:

Modularization should not increase complexity

n1

n2

n7

n3

n4 n5

n6

n0

n8

n1

n2

n7

n3

n4 n5

n6

n0

n8

n9

CALL A

A:

V = e – n + 2p

= 10 – 10 + 2 x 2 = 4

VLI = e – n + p + 1

= 10 – 10 + 2 + 1 = 3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

38

 UNIT-04/LECTURE-07

 Example of Test Case Design

Initial Functional Test Cases for Example ATM System

The following initial test cases can be identified early in the design process as a vehicle for

checking that the implementation is basically correct. No attempt has been made at this point

to do thorough testing, including all possible errors and boundary cases. That needs to come

later. These cases represent an initial check that the functionality specified by the use cases is

present.

Some writers would argue for developing test cases like these in place of use cases. Here, they

are presented as a vehicle for "fleshing out" the use cases, not as a substitute for them.

Use Case
Function Being

Tested

Initial System

State
Input Expected Output

System

Startup

System is started

when the switch is

turned "on"

System is off
Activate the "on"

switch

System requests

initial cash amount

System

Startup

System accepts

initial cash amount

System is

requesting cash

amount

Enter a legitimate

amount
System is on

System

Startup

Connection to the

bank is established

System has just

been turned on

Perform a

legitimate inquiry

transaction

System output

should demonstrate

that a connection has

been established to

the Bank

System

Shutdown

System is shut down

when the switch is

turned "off"

System is on and

not servicing a

customer

Activate the "off"

switch
System is off

System

Shutdown

Connection to the

Bank is terminated

when the system is

shut down

System has just

been shut down

Verify from the bank

side that a

connection to the

ATM no longer exists

we dont take any liability for the notes correctness. http://www.rgpvonline.com

39

Session

System reads a

customer's ATM

card

System is on and

not servicing a

customer

Insert a readable

card

Card is accepted;

System asks for entry

of PIN

Session
System rejects an

unreadable card

System is on and

not servicing a

customer

Insert an

unreadable card

Card is ejected;

System displays an

error screen;

System is ready to

start a new session

Session
System accepts

customer's PIN

System is asking

for entry of PIN
Enter a PIN

System displays a

menu of transaction

types

Session

System allows

customer to

perform a

transaction

System is

displaying menu

of transaction

types

Perform a

transaction

System asks whether

customer wants

another transaction

Session

System allows

multiple

transactions in one

session

System is asking

whether

customer wants

another

transaction

Answer yes

System displays a

menu of transaction

types

Session

Session ends when

customer chooses

not to do another

transaction

System is asking

whether

customer wants

another

transaction

Answer no

System ejects card

and is ready to start a

new session

Transaction

Individual types of

transaction will be

tested below

Transaction
System handles an

invalid PIN properly

A readable card

has been entered

Enter an incorrect

PIN and then

attempt a

The Invalid PIN

Extension is

performed

we dont take any liability for the notes correctness. http://www.rgpvonline.com

40

transaction

Withdrawal

System asks

customer to choose

an account to

withdraw from

Menu of

transaction types

is being displayed

Choose

Withdrawal

transaction

System displays a

menu of account

types

Withdrawal

System asks

customer to choose

a dollar amount to

withdraw

Menu of account

types is being

displayed

Choose checking

account

System displays a

menu of possible

withdrawal amounts

Withdrawal

System performs a

legitimate

withdrawal

transaction properly

System is

displaying the

menu of

withdrawal

amounts

Choose an

amount that the

system currently

has and which is

not greater than

the account

balance

System dispenses this

amount of cash;

System prints a

correct receipt

showing amount and

correct updated

balance;

System records

transaction correctly

in the log (showing

both message to the

bank and approval

back)

Withdrawal

System verifies that

it has sufficient cash

on hand to fulfill the

request

System has been

started up with

less than the

maximum

withdrawal

amount in cash

on hand;

System is

requesting a

withdrawal

Choose an

amount greater

than what the

system currently

has

System displays an

appropriate message

and asks customer to

choose a different

amount

we dont take any liability for the notes correctness. http://www.rgpvonline.com

41

amount

Withdrawal

System verifies that

customer's balance

is sufficient to fulfill

the request

System is

requesting a

withdrawal

ammount

Choose an

amount that the

system currently

has but which is

greater than the

account balance

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Withdrawal

A withdrawal

transaction can be

cancelled by the

customer any time

prior to choosing

the dollar amount

System is

displaying menu

of account types

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Withdrawal

A withdrawal

transaction can be

cancelled by the

customer any time

prior to choosing

the dollar amount

System is

displaying menu

of dollar

amounts

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Deposit

System asks

customer to choose

an account to

deposit to

Menu of

transaction types

is being displayed

Choose Deposit

transaction

System displays a

menu of account

types

Deposit

System asks

customer to enter a

dollar amount to

deposit

Menu of account

types is being

displayed

Choose checking

account

System displays a

request for the

customer to type a

dollar amount

Deposit System asks System is Enter a legitimate System requests that

we dont take any liability for the notes correctness. http://www.rgpvonline.com

42

customer to insert

an envelope

displaying a

request for the

customer to type

a dollar amount

dollar amount customer insert an

envelope

Deposit

System performs a

legitimate deposit

transaction properly

System is

requesting that

customer insert

an envelope

Insert an

envelope

System accepts

envelope;

System prints a

correct receipt

showing amount and

correct updated

balance;

System records

transaction correctly

in the log (showing

message to the bank,

approval back, and

acceptance of the

envelope)

Deposit

A deposit

transaction can be

cancelled by the

customer any time

prior to inserting an

envelope

System is

displaying menu

of account types

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Deposit

A deposit

transaction can be

cancelled by the

customer any time

prior to inserting an

envelope

System is

requesting

customer to

enter a dollar

amount

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

43

Deposit

A deposit

transaction can be

cancelled by the

customer any time

prior to inserting an

envelope

System is

requesting

customer to

insert an

envelope

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Deposit

A deposit

transaction is

cancelled

automatically if an

envelope is not

inserted within a

reasonable time

System is

requesting

customer to

insert an

envelope

Wait for the

request to time

out

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Transfer

System asks

customer to choose

an account to

transfer from

Menu of

transaction types

is being displayed

Choose Transfer

transaction

System displays a

menu of account

types specifying

transfer from

Transfer

System asks

customer to choose

an account to

transfer to

Menu of account

types to transfer

from is being

displayed

Choose checking

account

System displays a

menu of account

types specifying

transfer to

Transfer

System asks

customer to enter a

dollar amount to

transfer

Menu of account

types to transfer

to is being

displayed

Choose savings

account

System displays a

request for the

customer to type a

dollar amount

Transfer

System performs a

legitimate transfer

transaction properly

System is

displaying a

request for the

customer to type

a dollar amount

Enter a legitimate

dollar amount

System prints a

correct receipt

showing amount and

correct updated

balance;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

44

System records

transaction correctly

in the log (showing

both message to the

bank and approval

back)

Transfer

A transfer

transaction can be

cancelled by the

customer any time

prior to entering

dollar amount

System is

displaying menu

of account types

specifying

transfer from

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Transfer

A transfer

transaction can be

cancelled by the

customer any time

prior to entering

dollar amount

System is

displaying menu

of account types

specifying

transfer to

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Transfer

A transfer

transaction can be

cancelled by the

customer any time

prior to entering

dollar amount

System is

requesting

customer to

enter a dollar

amount

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Inquiry

System asks

customer to choose

an account to

inquire about

Menu of

transaction types

is being displayed

Choose Inquiry

transaction

System displays a

menu of account

types

we dont take any liability for the notes correctness. http://www.rgpvonline.com

45

Inquiry

System performs a

legitimate inquiry

transaction properly

System is

displaying menu

of account types

Choose checking

account

System prints a

correct receipt

showing correct

balance;

System records

transaction correctly

in the log (showing

both message to the

bank and approval

back)

Inquiry

An inquiry

transaction can be

cancelled by the

customer any time

prior to choosing an

account

System is

displaying menu

of account types

Press "Cancel" key

System displays an

appropriate message

and offers customer

the option of

choosing to do

another transaction

or not.

Invalid PIN

Extension

Customer is asked

to re-enter PIN

Enter an incorrect

PIN;

Attempt an

inquiry

transaction on the

customer's

checking account

Customer is asked to

re-enter PIN

Invalid PIN

Extension

Correct re-entry of

PIN is accepted

Request to re-

enter PIN is being

displayed

Enter correct PIN

Original transaction

completes

successfully

Invalid PIN

Extension

A correctly re-

entered PIN is used

for subsequent

transactions

An incorrect PIN

has been re-

entered and

transaction

completed

Perform another

transaction

This transaction

completes

successfully as well

we dont take any liability for the notes correctness. http://www.rgpvonline.com

46

normally

Invalid PIN

Extension

Incorrect re-entry of

PIN is not accepted

Request to re-

enter PIN is being

displayed

Enter incorrect

PIN

An appropriate

message is displayed

and re-entry of the

PIN is again

requested

Invalid PIN

Extension

Correct re-entry of

PIN on the second

try is accepted

Request to re-

enter PIN is being

displayed

Enter incorrect

PIN the first time,

then correct PIN

the second time

Original transaction

completes

successfully

Invalid PIN

Extension

Correct re-entry of

PIN on the third try

is accepted

Request to re-

enter PIN is being

displayed

Enter incorrect

PIN the first time

and second times,

then correct PIN

the third time

Original transaction

completes

successfully

Invalid PIN

Extension

Three incorrect re-

entries of PIN result

in retaining card and

aborting transaction

Request to re-

enter PIN is being

displayed

Enter incorrect

PIN three times

An appropriate

message is displayed;

Card is retained by

machine;

Session is terminated

we dont take any liability for the notes correctness. http://www.rgpvonline.com

47

 UNIT-04/LECTURE-08

Software Evolution

 It is impossible to produce system of any size which do not need to be changed. Once

software is put into use, new requirements emerge and existing requirements changes as

the business running that software changes.

 Parts of the software may have to be modified to correct errors that are found in operation,

improve its performance or other non-functional characteristics.

 All of this means that, after delivery, software systems always evolve in response to demand

for change.

Program Evolution Dynamic

 Program evolution dynamic is the study of system change. The majority of work in

this area has been carried out by Lehman and Belady. From these studies , they

proposed a sets of laws concerning system change.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

48

Software Evolution Approaches

 There are a number of different strategies for software change.[SOM2004]

 Software maintenance

 Architectural transformation

 Software re-engineering.

 Software maintenance

 Changes to the software are made in response to changed requirements but the

fundamental structure of the software remains stable. This is most common approach

used to system change.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

49

 UNIT-04/LECTURE-09

Maintenance activities[RGPV/June 2014(7)]

 Software maintenance is the general process of changing a system after it has been diverted.

 The change may be simple changes to correct coding errors, more extensive changes to

correct design errors or significant enhancement to correct specification error or

accommodate new requirements.

Maintenance Characteristics

 We need to look at maintenance from three different viewpoints: [PRE2004]

– the activities required to accomplish the maintenance phase and the impact of a

software engineering approach (or lack thereof) on the usefulness of such

activities

– the costs associated with the maintenance phase

– the problems that are frequently encountered when software maintenance is

undertaken

The Maintenance Process

 Maintenance process vary considerably depending on the types of software being

maintained, the development processes used in an organization and people involved

in the process.

Types of Maintenance

Corrective maintenance

Corrective maintenance deals with the repair of faults or defects found in day-today system

we dont take any liability for the notes correctness. http://www.rgpvonline.com

50

functions. A defect can result due to errors in software design, logic and coding. Design errors

occur when changes made to the software are incorrect, incomplete, wrongly communicated,

or the change request is misunderstood. Logical errors result from invalid tests and conclusions,

incorrect implementation of design specifications, faulty logic flow, or incomplete test of data.

All these errors, referred to as residual errors, prevent the software from conforming to its

agreed specifications. Note that the need for corrective maintenance is usually initiated by bug

reports drawn by the users.

In the event of a system failure due to an error, actions are taken to restore the operation of

the software system. The approach in corrective maintenance is to locate the original

specifications in order to determine what the system was originally designed to do. However,

due to pressure from management, the maintenance team sometimes resorts to emergency

fixes known as patching. Corrective maintenance accounts for 20% of all the maintenance

activities.

Adaptive Maintenance

Adaptive maintenance is the implementation of changes in a part of the system, which has

been affected by a change that occurred in some other part of the system. Adaptive

maintenance consists of adapting software to changes in the environment such as the

hardware or the operating system. The term environment in this context refers to the

conditions and the influences which act (from outside) on the system. For example, business

rules, work patterns, and government policies have a significant impact on the software system.

For instance, a government policy to use a single 'European currency' will have a significant

effect on the software system. An acceptance of this change will require banks in various

member countries to make significant changes in their software systems to accommodate this

currency. Adaptive maintenance accounts for 25% of all the maintenance activities.

Perfective Maintenance

Perfective maintenance mainly deals with implementing new or changed user requirements.

Perfective maintenance involves making functional enhancements to the system in addition to

the activities to increase the system's performance even when the changes have not been

suggested by faults. This includes enhancing both the function and efficiency of the code and

changing the functionalities of the system as per the users' changing needs.
we dont take any liability for the notes correctness. http://www.rgpvonline.com

51

Examples of perfective maintenance include modifying the payroll program to incorporate a

new union settlement and adding a new report in the sales analysis system. Perfective

maintenance accounts for 50%, that is, the largest of all the maintenance activities.

Preventive Maintenance

Preventive maintenance involves performing activities to prevent the occurrence of errors. It

tends to reduce the software complexity thereby improving program understandability and

increasing software maintainability. It comprises documentation updating, code optimization,

and code restructuring. Documentation updating involves modifying the documents affected by

the changes in order to correspond to the present state of the system. Code optimization

involves modifying the programs for faster execution or efficient use of storage space. Code

restructuring involves transforming the program structure for reducing the complexity in source

code and making it easier to understand.

Preventive maintenance is limited to the maintenance organization only and no external

requests are acquired for this type of maintenance. Preventive maintenance accounts for only

5% of all the maintenance activities.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Discuss briefly on software

maintenance activities & how

do you estimate the cost

involved. Explain.

Jun.2014

7

REFERENCCE

BOOK AUTHOR

PRIORITY

Software

Engineering P,S. Pressman

1

Software

Engineering Pankaj jalote

2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

52

we dont take any liability for the notes correctness. http://www.rgpvonline.com

