
1

UNIT – 2

Basic Concepts of CPU Scheduling

UNIT -02/Lecture 01

 Process Concept

An operating system executes a variety of programs:

**Batch system – jobs

**Time-shared systems – user programs or tasks

**Textbook uses the terms job and process almost interchangeably.

**Process – a program in execution; process execution must progress in sequential fashion.

A process includes:

**program counter

**stack

**data section

Process State

**As a process executes, it changes state

**new: The process is being created.

**running: Instructions are being executed.

**waiting: The process is waiting for some event to occur.

**ready: The process is waiting to be assigned to a process.

**terminated: The process has finished execution.

Process State

Process Control Block (PCB)

Information associated with each process.

** Process state

** Program counter

** CPU registers

** CPU scheduling information

** Memory-management information
we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

** Accounting information

** I/O status information

 CPU Switch From Process to Process

Process Scheduling Queues

** Job queue – set of all processes in the system.

** Ready queue – set of all processes residing in main memory, ready and waiting to execute.

** Device queues – set of processes waiting for an I/O device.

** Process migration between the various queues.

Ready Queue And Various I/O Device Queues

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

Representation of Process Scheduling

Schedulers

** Long-term scheduler (or job scheduler) – selects which processes should be brought into the

ready queue.

** Short-term scheduler (or CPU scheduler) – selects which process should be executed next

and allocates CPU.

**Short-term scheduler is invoked very frequently (milliseconds) (must be fast).

**Long-term scheduler is invoked very infrequently (seconds, minutes) (may be slow).

**The long-term scheduler controls the degree of multiprogramming.

**Processes can be described as either:

**I/O-bound process – spends more time doing I/O than computations, many short CPU bursts.

**CPU-bound process – spends more time doing computations; few very long CPU bursts.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Short notes on context

switching

Dec 2009 2

Q.2 Explain structure of PCB Dec 2012

Dec 2009

7

3

Q.3 Types of Schedulers Dec 2012 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

Unit-02/Lecture-02

Context Switch

** When CPU switches to another process, the system must save the state of the old process

and load the saved state for the new process.

** Context-switch time is overhead; the system does no useful work while switching.

** Time dependent on hardware support.

Process Creation

**Parent process create children processes, which, in turn create other processes, forming a

tree of processes.

**Resource sharing

**Parent and children share all resources.

**Children share subset of parent’s resources.

**Parent and child share no resources.

**Execution

**Parent and children execute concurrently.

**Parent waits until children terminate.

**Address space

**Child duplicate of parent.

**Child has a program loaded into it.

UNIX examples

**fork system call creates new process

**exec system call used after a fork to replace the process’ memory space with a new program.

Process Termination

**Process executes last statement and asks the operating system to decide it (exit).

**Output data from child to parent (via wait).

**Process’ resources are deallocated by operating system.

**Parent may terminate execution of children processes (abort).

**Child has exceeded allocated resources.

**Task assigned to child is no longer required.

**Parent is exiting.

**Operating system does not allow child to continue if its parent terminates.

**Cascading termination.

Cooperating Processes

**Independent process cannot affect or be affected by the execution of another process.

**Cooperating process can affect or be affected by the execution of another process

Advantages of process cooperation

**Information sharing

**Computation speed-up

**Modularity

**Convenience

we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

Thread

Single and Multithreaded Processes

Benefits

Responsiveness

Resource Sharing

Economy

Utilization of MP Architectures

User Threads

**Thread management done by user-level threads library Examples

- POSIX Pthreads

- Mach C-threads

- Solaris threads

Kernel Threads

**Supported by the Kernel

Examples

- Windows 95/98/NT/2000

- Solaris

- Tru64 UNIX

- BeOS

- Linux

Multithreading Models

1) Many-to-One

Many user-level threads mapped to single kernel thread.

Used on systems that do not support kernel threads

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

2) One-to-One Model

Each user-level thread maps to kernel thread.

Examples

- Windows 95/98/NT/2000

- OS/2

3) Many-to-Many Model

Allows many user level threads to be mapped to many kernel threads.

Allows the operating system to create a sufficient number of kernel threads.

-Solaris 2

-Windows NT/2000 with the ThreadFiber package

Threading Issues

**Semantics of fork() and exec() system calls.

**Thread cancellation.

**Signal handling

**Thread pools

**Thread specific data

Windows 2000 Threads

**Implements the one-to-one mapping.

**Each thread contains

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

- a thread id

- register set

- separate user and kernel stacks

- private data storage area

Linux Threads

**Linux refers to them as tasks rather than threads.

**Thread creation is done through clone() system call.

**Clone() allows a child task to share the address space of the parent task (process)

Java Threads

**Java threads may be created by:

**Extending Thread class

**Implementing the Runnable interface

**Java threads are managed by the JVM.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Single thread Vs Multithreading

issues

Dec 2011

Dec 2009

10

6

Q.2 Discuss Process Creation &

termination

Dec 2012 5

we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

Unit-02/Lecture-03

CPU and I/O Bursts

 a process cycles between CPU processing and I/O activity

 a process generally has many short CPU bursts or a few long CPU bursts

 I/O bound processes have many short CPU bursts

 CPU bound processes have few long CPU bursts

 this can effect the choice of CPU scheduling algorithm used in an OS

Scheduling

 CPU scheduling decisions may take place when a process

1. switches from the running to waiting state

2. switches from the running to ready state

3. switches from the waiting to ready state

4. terminates

 scheduling under conditions 1 and 4 is called non-preemptive (context switch is caused

by the running program)

 scheduling under conditions 2 and 3 is preemptive (context switch caused by external

reasons)

Dispatcher

1. Dispatcher module gives control of the CPU to the process selected by the short-term

scheduler; this involves:

a. switching context

b. switching to user mode

c. jumping to the proper location in the user program to restart that program

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

2. Dispatch latency – time it takes for the dispatcher to stop one process and start another

running.

Scheduling Criteria

1. CPU utilization – keep the CPU as busy as possible

2. Throughput – # of processes that complete their execution per time unit

3. Turnaround time – amount of time to execute a particular process

4. Waiting time – amount of time a process has been waiting in the ready queue

5. Response time – amount of time it takes from when a request was submitted until the first

response is produced, not output (for time-sharing environment)

Optimization Criteria

1. Max CPU utilization

2. Max throughput

3. Min turnaround time

4. Min waiting time

5. Min response time

CPU Scheduling Algorithms

 First-Come, First Serve (FCFS or FIFO) (non-preemptive)

 Priority (e.g., Shortest Job First (SJF; non-preemptive)

 Shortest Remaining Time First (SRTF; preemptive))

 Round Robin (preemptive)

 Multi-level Queue

 Multi-level Feedback Queue

First-Come, First Serve

 non-preemptive scheduling management

 ready queue is managed as a FIFO queue
we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

 example: 3 jobs arrive at time 0 in the following order (batch processing):

Process Burst Time Arrival Start Wait Finish TA

1 24 0 0 0 24 24

2 3 0 24 24 27 27

3 3 0 27 27 30 30

 Gantt chart:

 average waiting time: (0+24+27)/3 = 17

 average turnaround time: (24+27+30) = 27

 consider arrival order: 2, 3, 1

Process Burst Time Arrival Start Wait Finish TA

2 3 0 0 0 3 3

3 3 0 3 3 6 6

1 24 0 6 6 30 30

 Gantt chart:

 average waiting time: (0+3+6)/3 = 3

 average turnaround time: (3+6+30) = 13

 another example:

Process Burst Time Arrival Start Wait Finish TA

1 12 0 0 0 12 12

2 6 1 12 11 18 17

3 9 4 18 14 27 23

 Gantt chart:

 average waiting time: (0+11+14)/3 = 8.33

 average turnaround time: (12+17+23) = 52/3 = 17.33

 another example:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

Process Burst Time Arrival Start Wait Finish TA

1 10 0 0 0 10 10

2 29 0 10 10 39 39

3 3 0 39 39 42 42

4 7 0 42 42 49 49

5 12 0 49 49 61 61

 Gantt chart:

 average waiting time: (0+10+39+42+49)/5 = 28

 average turnaround time: (10+39+42+49+61)/5 = 40.2

S.NO RGPV QUESTION YEAR MARKS

Q.1 Scheduling Criteria Dec 2011

June 2010

10

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

Unit-02/Lecture-04

Priority Scheduling

 associate a priority with each process, allocate the CPU to the process with the highest

priority

 any 2 processes with the same priority are handled FCFS

 SJF is a version of priority scheduling where the priority is defined using the predicted

CPU burst length

 priorities are usually numeric over a range

 high numbers may indicate low priority (system dependent)

 internal (process-based) priorities: time limits, memory requirements, resources

needed, burst ratio

 external (often political) priorities: importance, source (e.g., faculty, student)

 priority scheduling can be non-preemptive or preemptive

 problem: starvation --- low priority processes may never execute because they are

waiting indefinitely for the CPU

 a solution: aging --- increase the priority of a process as time progresses

Shortest Job First (SJF)

 associate with each process the length of its next CPU burst

 schedule the process with the shortest time

 two schemes

o non-preemptive: once scheduled, a process continues until the end of its CPU

burst

o preemptive: preempt if a new process arrives with a CPU burst of less length

than the remaining time of the currently executing process; known as the

Shortest Remaining Time First (SRTF) algorithm

 SJF is provably optimal; it yields a minimum average waiting time for any set of

processes

 however, we cannot always predict the future (i.e., we do not know the next burst

length)

 we can only estimate its length

 an estimate can be formed by using the length of its previous CPU bursts:

SJF (non-preemptive) examples

 example 1:

Process Burst Time Arrival Start Wait Finish TA

1 6 0 3 3 9 9

2 8 0 16 16 24 24

3 7 0 9 9 16 16

4 3 0 0 0 3 3

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

 Gantt chart:

 average waiting time: (3+16+9+0)/4 = 7

 average turnaround time: (9+24+16+3)/4 = 13

 example 2:

Process Burst Time Arrival Start Wait Finish TA

1 7 0 0 0 7 7

2 4 2 8 6 12 10

3 1 4 7 3 8 4

4 4 5 12 7 16 11

 Gantt chart:

 average waiting time: (0+6+3+7)/4 = 4

 average turnaround time: (7+4+10+11)/4 = 8

 example 3:

Process Burst Time Arrival Start Wait Finish TA

1 10 0 10 10 20 20

2 29 0 32 32 61 61

3 3 0 0 0 3 3

4 7 0 3 3 10 10

5 12 0 20 20 32 32

 Gantt chart:

 average waiting time: (10+32+0+3+20)/5 = 13

 average turnaround time: (10+39+42+49+61)/5 = 25.2

SRTF (preemptive) examples

 example 1:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

Process Burst Time Arrival Start Wait Finish TA

1 8 0 0 9 17 17

2 4 1 1 0 5 4

3 9 2 17 15 26 24

4 5 3 5 2 10 7

 Gantt chart:

 average waiting time: (9+0+15+2)/4 = 6.5

 average turnaround time: (17+4+24+7)/4 = 13

 example 2:

Process Burst Time Arrival Start Wait Finish TA

1 7 0 0 9 16 16

2 4 2 2 1 7 5

3 1 4 4 0 5 1

4 4 5 7 2 11 6

 Gantt chart:

 average waiting time: (9+1+0+2)/4 = 3

 average turnaround time: (16+5+1+6)/4 = 7

S.NO RGPV QUESTION YEAR MARKS

Q.1 CPU Scheduling numerical

SJF,SRTF,FIFO

Dec

2009

20

Q.2

June

2010

Dec

2012

10

10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

Unit-02/Lecture-05

Priority scheduling example

Process Burst Time Priority Arrival Start Wait Finish TA

1 10 3 0 6 6 16 16

2 1 1 0 0 0 1 1

3 2 4 0 16 16 18 18

4 1 5 0 18 18 19 19

5 5 2 0 1 1 6 6

Gantt chart:

average waiting time: (6+0+16+18+1)/5 = 8.2

average turnaround time: (1+6+16+18+19)/5 = 12

Round Robin

 time sharing (preemptive) scheduler where each process is given access to the CPU for 1

time quantum (slice) (e.g., 20 milliseconds)

 a process may block itself before its time slice expires

 if it uses its entire time slice, it is then preempted and put at the end of the ready queue

 the ready queue is managed as a FIFO queue and treated as a circular

 if there are n processes on the ready queue and the time quantum is q, then each

process gets 1/n time on the CPU in chunks of at most q time units

 no process waits for more than (n-1)q time units

 the choice of how big to make the time slice (q) is extremely important

o if q is very large, Round Robin degenerates into FCFS

o if q is very small, the context switch overhead defeats the benefits

 example 1 (q = 20):

Process Burst Time Arrival Start Wait Finish TA

1 53 0 0 ? 134 134

2 17 0 20 ? 37 37

3 68 0 37 ? 162 162

4 24 0 57 ? 121 121

 Gantt chart:

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

 waiting times:

 p1: (77-20) + (121-97) = 81

 p2: (20-0) = 20

 p3: (37-0) + (97-57) + (134-117) = 94

 p4: (57-0) + (117-77) = 97

 average waiting time: (81+20+94+97)/4 = 73

 example 2 (q = 4):

Process Burst Time Arrival Start Wait Finish TA

1 24 0 0 6 30 30

2 3 0 4 4 7 7

3 3 0 7 7 10 10

 Gantt chart:

 average waiting time: (6+4+7)/3 = 5.67

 average turnaround time: (30+7+10)/3 = 15.67

 example 3 (q = 10):

Process Burst Time Arrival Start Wait Finish TA

1 10 0 0 0 10 10

2 29 0 10 32 61 61

3 3 0 20 20 23 23

4 7 0 23 23 30 30

5 12 0 30 40 52 52

 Gantt chart:

 average waiting time: (0+32+20+23+40)/5 = 23

 average turnaround time: (10+39+42+49+61)/5 = 35.2

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

Multilevel Queue

 the ready queue is managed as multiple queues based on various characteristics. For

instance,

o foreground (interactive)

o background (batch)

 each queue uses a particular scheduling algorithm. For instance,

o foreground (round robin)

o background (FCFS)

 scheduling must be done between queues:

o fixed priority (may lead to starvation) (e.g., foreground jobs have absolute

priority over background jobs)

o time slice per queue

S.NO RGPV QUESTION YEAR MARKS

Q.1

Dec

2012

20

Q.2

Dec

2013

14

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

Unit-02/Lecture-06

Multilevel Feedback Queue

 processes move between the various queues

 a multilevel feedback queue is characterized by

o number of queues

o scheduling algorithm for each queue

o method used to determine when to upgrade a process

o method used to determine when to demote a process

o method used to determine on which queue a process begins (each time it

returns to the ready state)

 example:

o 3 queues

o fixed priority based on length of CPU burst

o RR for 1st queue, FCFS for last queue

o each process begins on top queue (quantum = 8)

Multiple-Processor Scheduling

1. CPU scheduling more complex when multiple CPUs are available.

2. Homogeneous processors within a multiprocessor.

3. Load sharing

4. Asymmetric multiprocessing – only one processor accesses the system data structures,

alleviating the need for data sharing.

Real-Time Scheduling

1. Hard real-time systems – required to complete a critical task within a guaranteed amount of

time.

2. Soft real-time computing – requires that critical processes receive priority over less fortunate

ones.

Algorithm Evaluation

 which algorithm should be used in a particular system?

 how should the parameters (e.g., q, number of levels) be defined?

 on which criteria do we base our decisions?

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

Approaches to evaluation

 deterministic modeling

 queue models

 simulation

 implementation

Deterministic modeling

 define a workload and compare it across algorithms

 simple to execute and results in distinct values to compare

 however, the results apply only to that case and cannot be generalized

 a set of workload scenarios with varying characteristics can be defined and analyzed

 must be careful about any conclusion drawn

Queuing models

 n = average queue length

 W = average waiting time in the queue

 λ = average arrival rate

 Little's Formula: n = λ * W

 Little's formula can be applied to the CPU and ready queue, or the wait queue for any

device

 values can be obtained by measuring a real system over time and mathematically

estimating

 the estimates are not always accurate due to:

o complicated algorithms

o assumptions

 therefore, the queuing model may not reflect reality to the level needed

Evaluation of CPU Schedulers by Simulation

S.NO RGPV QUESTION YEAR MARKS

Q.1 FCFS, RR, Multilevel feedback

queue

Dec 2012 14

we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

Unit-02/Lecture-07

 Process Synchronization

1. Concurrent access to shared data may result in data inconsistency.

2. Maintaining data consistency requires mechanisms to ensure the orderly execution of

cooperating processes.

3. Shared-memory solution to bounded-butter problem (Chapter 4) allows at most n – 1 items

in buffer at the same time. A solution, where all N buffers are used is not simple.

a. Suppose that we modify the producer-consumer code by adding a variable counter,

initialized to 0 and incremented each time a new item is added to the buffer

Bounded-Buffer

Shared data

#define BUFFER_SIZE 10

typedef struct { …..
} item;

item buffer[BUFFER_SIZE];

int in = 0;

int out = 0;

int counter = 0;

Producer process

item nextProduced;

while (1) {

while (counter == BUFFER_SIZE)

; /* do nothing */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER_SIZE;

counter++;

}

Consumer process

item nextConsumed;

while (1) {

while (counter == 0)

; /* do nothing */

nextConsumed = buffer[out];

out = (out + 1) % BUFFER_SIZE;

counter--;

}

1. The statements counter++; counter--; must be performed atomically.

2. Atomic operation means an operation that completes in its entirety without interruption.

3. The statement count++ may be implemented in machine language as: register1 = counter

register1 = register1 + 1 counter = register1

4. The statement count— may be implemented as: register2 = counter register2 = register2 –

1 counter = register2

5. If both the producer and consumer attempt to update the buffer concurrently, the assembly

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

language statements may get interleaved.

6. Interleaving depends upon how the producer and consumer processes are scheduled.

1. Assume counter is initially 5. One interleaving of statements is: producer: register1 =

counter (register1 = 5) producer: register1 = register1 + 1 (register1 = 6) consumer:

register2 = counter (register2 = 5) consumer: register2 = register2 – 1 (register2 = 4)

producer: counter = register1 (counter = 6) consumer: counter = register2 (counter = 4)

2. The value of count may be either 4 or 6, where the correct result should be 5.

The critical section problem

Given two more more processes (or threads) which share a resource (e.g., variable or device),

we must often synchronize their activity. Must satisfy to one degree or another the concepts of

mutual exclusion, progress, and bounded waiting.

Example: consider only two processes

critical section (<cs>): instructions which access shared resource

We must establish mutual exclusion: no two processes can be in their <cs> at the same time.

process producer {

 while (true) {

 while (count == BUFFER_SIZE);

 ++count;

 buffer[in] = item;

 in = (in + 1) % BUFFER_SIZE;

 }

}

process consumer {

 while (true) {

 while (count == 0);

 --count;

 item = buffer[out];

 out = (out - 1) % BUFFER_SIZE;

 }

}

A race condition: a situation where multiple processes access and manipulate the same data

concurrently and the outcome of the execution depends on the order in which the instructions

execute.

A solution must satisfy three requirements:

 mutual exclusion: only one process may execute its critical section at once.

 progress: if no process is executing in its critical section and some processes wish to

enter their critical sections, then only those processes not executing in their remainder

sections can participate in the decision on which process will enter its critical section

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

next, and this decision cannot be postponed indefinitely.

 bounded waiting: this is a limit on the number of times other processes are allowed to

enter their critical section after a process has made a request to enter its critical section

and before that request is granted.

Basic idea in synchronization: need locks in one form or another

while (true)

 // entry section; acquire lock

 // critical section

 // exit section; release lock

 // remainder section

}

Three primitive solutions to the critical section problem

 disable interrupts during execution of <cs>

 process p_i {

 while (true) {

 // disable interrupts (a system call)

 // critical section

 // enable interrupts (a system call)

 // remainder section

 }

 }

o degrades efficiency

o not possible multiprocessor systems

 hardware instructions (e.g., test-and-set and swap)

 Peterson's solution

S.NO RGPV QUESTION YEAR MARKS

Q.1 Process synchronization Dec 2012

Dec 2013

10

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

Unit-02/Lecture-08

Hardware instructions

two new instructions, both versions of a read-modify-write instruction

 test and set

 boolean test-and-set (boolean* target) {

 boolean temp = *target;

 *target = true;

 return temp;

 }

 boolean occupied = false;

 while (true) {

 while (test-and-set (&occupied));

 // critical section

 occupied = false;

 // remainder section

 }

problems? starvation

 swap

 void swap (boolean* x, boolean *y) {

 boolean temp = *x;

 *x = *y;

 *y = temp;

 }

 boolean occupied = false;

 boolean p_i_must_wait = true;

 while (true) {

 do

 swap (&p_i_must_wait, &occupied);

 while (p_i_must_wait);

 // critical section

 p_i_must_wait = true;

 occupied = false;
we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

 // remainder section

 }

Peterson's Solution

shared data:

int turn;

boolean flag[2];

process p_i {

 while (true) {

 flag[i] = true; // I am ready to enter my <cs>

 turn = j; // but I give p_j priority

 // as long as p_j wants access and it is p_j's turn, I do no-op

 while (flag[j] && turn == j);

 // critical section

 // I am no longer in my <cs>

 flag[i] = false;

 // remainder section;

 }

}

process p_j {

 while (true) {

 flag[j] = true; // I am ready to enter my <cs>

 turn = i; // but I give p_i priority

 // as long as p_i wants access and it is p_i's turn, I do no-op

 while (flag[i] && turn == i);

 // critical section

 // I am no longer in my <cs>

 flag[j] = false;

 // remainder section;

 }

}

Peterson's solution guarantees mutual exclusion, progress, and bounded waiting.

What is the problem with Peterson's solution?

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

busy waiting: the waiting process wastes CPU cycles; in a uniprocessor system, the process

waits until its quantum expires

Synchronization Hardware

Atomically swap two variables.

void Swap(boolean &a, boolean &b) {

boolean temp = a;

a = b;

b = temp;

}

Mutual Exclusion with Swap

Shared data (initialized to false): boolean lock;

boolean waiting[n];

Process Pi

do {

key = true;

while (key == true)

Swap(lock,key);

critical section

lock = false;

remainder section

}

High-level synchronization solutions

(which rely on primitive solutions)

 semaphores

 monitors

Uses of semaphores

1. Synchronization tool that does not require busy waiting.

2. Semaphore S – integer variable

3. can only be accessed via two indivisible (atomic) operations

wait (S):

while S 0 do no-op; S--;

signal (S):

S++;

Types of semaphores

 binary semaphore (sometimes called a mutex lock): integer value can range only over 0

and 1

 counting semaphore: integer value can range over an unrestricted domain

Semaphore type can be an issue of implementation, or simple how a semaphore is used.

Binary semaphores can be simpler to implement depending on hardware support.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

Counting semaphores can be implemented using binary semaphores

Two Types of Semaphores

1. Counting semaphore – integer value can range over an unrestricted domain.

2. Binary semaphore – integer value can range only between 0 and 1; can be simpler to

implement.

3. Can implement a counting semaphore S as a binary semaphore.

Implementing S as a Binary Semaphore

Data structures:

binary-semaphore S1, S2;

int C:

Initialization:

S1 = 1

S2 = 0

C = initial value of semaphore S

Implementing S

wait operation

wait(S1);

C--;

if (C < 0) {

signal(S1);

wait(S2);

}

signal(S1);

signal operation

wait(S1);

C ++;

if (C <= 0)

signal(S2);

else

signal(S1);

Deadlock and Starvation

Deadlock – two or more processes are waiting indefinitely for an event that can be caused by

only one of the waiting processes.

Let S and Q be two semaphores initialized to 1

P0 P1

wait(S); wait(Q);

wait(Q); wait(S);

signal(S); signal(Q);

signal(Q) signal(S);

Starvation – indefinite blocking. A process may never be removed from the semaphore queue

in which it is suspended.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

27

Critical Regions

1. Regions referring to the same shared variable exclude each other in time.

2. When a process tries to execute the region statement, the Boolean expression B is evaluated.

If B is true, statement S is executed. If it is false, the process is delayed until B becomes true and

no other process is in the region associated with v.

Example – Bounded Buffer

1. Shared data:

struct buffer {

int pool[n];

int count, in, out;

}

Bounded Buffer Producer Process

1. Producer process inserts nextp into the shared buffer

region buffer when(count < n) { pool[in] = nextp; in:= (in+1) % n; count++; }

Bounded Buffer Consumer Process

1. Consumer process removes an item from the shared buffer and puts it in nextc

region buffer when (count > 0) { nextc = pool[out]; out = (out+1) % n; count--; }

Implementation region x when B do S

1. Associate with the shared variable x, the following variables:

i. semaphore mutex, first-delay, second-delay; int first-count, second-count;

2. Mutually exclusive access to the critical section is provided by mutex.

3. If a process cannot enter the critical section because the Boolean expression B is false, it

initially waits on the first-delay semaphore; moved to the second-delay semaphore before it is

allowed to reevaluate B.

Implementation

1. Keep track of the number of processes waiting on first-delay and second-delay, with first-

count and second-count respectively.

2. The algorithm assumes a FIFO ordering in the queuing of processes for a semaphore.

3. For an arbitrary queuing discipline, a more complicated implementation is required.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Critical section problem & its

solutions

Dec 2013 7

Q.2 Use of semaphores with

producer consumer problem

Dec 2011 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

28

Unit-02/Lecture-09

Monitors

1. High-level synchronization construct that allows the safe sharing of an abstract data type

among concurrent processes.

monitor monitor-name

{

shared variable declarations

procedure body P1 … ,
. . .

}

procedure body P2 … ,
. . .

}

procedure body Pn … ,
. . .

}

{

initialization code

}

}

1. To allow a process to wait within the monitor, a condition variable must be declared, as

condition x, y;

2. Condition variable can only be used with the operations wait and signal.

The operation

x.wait(); means that the process invoking this operation is suspended until another process

invokes

x.signal();

The x.signal operation resumes exactly one suspended process. If no process is suspended,

then the signal operation has no effect.
we dont take any liability for the notes correctness. http://www.rgpvonline.com

29

Monitor Implementation

1) Conditional-wait construct: x.wait(c);

a. c – integer expression evaluated when the wait operation is executed.

b. value of c (a priority number) stored with the name of the process that is suspended.

c. when x.signal is executed, process with smallest associated priority number is resumed next.

2) Check two conditions to establish correctness of system:

a. User processes must always make their calls on the monitor in a correct sequence.

b. Must ensure that an uncooperative process does not ignore the mutual-exclusion gateway

provided by the monitor, and try to access the shared resource directly, without using the

access protocols.

Condition variables

Classical probems of synchronization

 The Bounded Buffer Problem (also called the The Producer-Consumer Problem)

 The Readers-Writers Problem

 The Dining Philosophers Problem

These problems are used to test nearly every newly proposed synchronization scheme or

primitive.

The Bounded Buffer Problem

Consider:

 a buffer which can store n items

 a producer process which creates the items (1 at a time)

 a consumer process which processes them (1 at a time)

A producer cannot produce unless there is an empty buffer slot to fill.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

30

A consumer cannot consume unless there is at least one produced item.

Semaphore empty=N, full=0, mutex=1;

process producer {

 while (true) {

 empty.acquire();

 mutex.acquire();

 // produce

 mutex.release();

 full.release();

 }

}

process consumer {

 while (true) {

 full.acquire();

 mutex.acquire();

 // consume

 mutex.release();

 empty.release();

}

The semaphore mutex provides mutual exclusion for access to the buffer.

The Readers-Writers Problem

A data item such as a file is shared among several processes.

Each process is classified as either a reader or writer.

Multiple readers may access the file simultaneously.

A writer must have exclusive access (i.e., cannot share with either a reader or another writer).

A solution gives priority to either readers or writers.

 readers' priority: no reader is kept waiting unless a writer has already obtained

permission to access the database

 writers' priority: if a writer is waiting to access the database, no new readers can start

reading

A solution to either version may cause starvation

 in the readers' priority version, writers may starve

 in the writers' priority version, readers may starve

A semaphore solution to the readers' priority version (without addressing starvation):

Semaphore mutex = 1;

we dont take any liability for the notes correctness. http://www.rgpvonline.com

31

Semaphore db = 1;

int readerCount = 0;

process writer {

 db.acquire();

 // write

 db.release();

}

 process reader {

 // protecting readerCount

 mutex.acquire();

 ++readerCount;

 if (readerCount == 1)

 db.acquire();

 mutex.release();

 // read

 // protecting readerCount

 mutex.acquire();

 --readerCount;

 if (readerCount == 0)

 db.release;

 mutex.release();

}

readerCount is a <cs> over which we must maintain control and we use mutex to do so.

The Dining Philosophers Problem

n philosophers sit around a table thinking and eating. When a philosopher thinks she does not

interact with her colleagues. Periodically, a philosopher gets hungry and tries to pick up the

chopstick on his left and on his right. A philosopher may only pick up one chopstick at a time

and, obviously, cannot pick up a chopstick already in the hand of neighbor philosopher.

The dining philosophers problems is an example of a large class or concurrency control

problems; it is a simple representation of the need to allocate several resources among several

processes in a deadlock-free and starvation-free manner.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

32

A semaphore solution:

// represent each chopstick with a semaphore

Semaphore chopstick[] = new Semaphore[5]; // all = 1 initially

process philosopher_i {

 while (true) {

 // pick up left chopstick

 chopstick[i].acquire();

 // pick up right chopstick

 chopstick[(i+1) % 5].acquire();

 // eat

 // put down left chopstick

 chopstick[i].release();

 // put down right chopstick

 chopstick[(i+1) % 5].release();

 // think

 }

}

.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Reader Writer problem June 2010

Dec 2011

Dec 2013

10

10

7

Q.2 Process synchronization Dec 2012

Dec 2013

10

7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

