
1

Unit-03

Deadlock and Memory Management

Unit-03/Lecture-01

The Deadlock Problem

1. A set of blocked processes each holding a resource and waiting to acquire a resource held by

another process in the set.

2. Example

a. System has 2 tape drives.

b. P1 and P2 each hold one tape drive and each needs another one.

3. Example

a. semaphores A and B, initialized to 1

P0 P1

wait (A); wait(B)

wait (B); wait(A)

Bridge Crossing Example

1. Traffic only in one direction.

2. Each section of a bridge can be viewed as a resource.

3. If a deadlock occurs, it can be resolved if one car backs up (preempt resources and rollback).

4. Several cars may have to be backed up if a deadlock occurs.

5. Starvation is possible.

System Model

1. Resource types R1, R2, . . ., Rm

2. CPU cycles, memory space, I/O devices

3. Each resource type Ri has Wi instances.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

2

4. Each process utilizes a resource as follows:

a. request

b. use

c. release

Deadlock Characterization

Deadlock can arise if four conditions hold simultaneously.

1. Mutual exclusion: only one process at a time can use a resource.

2. Hold and wait: a process holding at least one resource is waiting to acquire additional

resources held by other processes.

3. No preemption: a resource can be released only voluntarily by the process holding it, after

that process has completed its task.

4. Circular wait: there exists a set {P0, Pϭ, …, P0} of waiting processes such that P0 is waiting for

a resource that is held by P1, P1 is waiting for a resource that is held by

PϮ, …, Pn–1 is waiting for a resource that is held by Pn, and P0 is waiting for a resource that is

held by P0.

Resource-Allocation Graph

A set of vertices V and a set of edges E.

1. V is partitioned into two types:

 a. P = {P1, PϮ, …, Pn}, the set consisting of all the processes in the system.

 b. R = {R1, RϮ, …, Rm}, the set consisting of all resource types in the system.

2. request edge – directed edge P1 Rj

3. assignment edge – directed edge Rj Pi

4. Process

5. Resource Type with 4 instances

6. Pi requests instance of Rj

7. Pi is holding an instance of Rj

.

S.NO RGPV QUESTION YEAR MARKS

Q.1 List and explain four necessary

conditions simultaneously hold

for deadlock?

Dec 2011 10

Q.2 What is Deadlock Dec 2013 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

3

Unit-03/Lecture-02

. Resource-Allocation Graph (contd.)

Example of a Resource

Allocation Graph

 Resource Allocation

Graph With A Deadlock

Resource Allocation Graph

With A Cycle But No

Deadlock

Basic Facts

1. If graph contains no cycles no deadlock.

2. If graph contains a cycle

a. if only one instance per resource type, then deadlock.

b. if several instances per resource type, possibility of deadlock.

Methods for Handling Deadlocks

1. Ensure that the system will never enter a deadlock state.

2. Allow the system to enter a deadlock state and then recover.

3. Ignore the problem and pretend that deadlocks never occur in the system; used by most

operating systems, including UNIX.

Deadlock Prevention

Restrain the ways request can be made.

1. Mutual Exclusion – not required for sharable resources; must hold for nonsharable

resources.

2. Hold and Wait – must guarantee that whenever a process requests a resource, it does not

hold any other resources.

 a. Require process to request and be allocated all its resources before it begins execution,

 or allow process to request resources only when the process has none.

 b. Low resource utilization; starvation possible.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

4

3. No Preemption –

If a process that is holding some resources requests another resource that cannot be

immediately allocated to it, then all resources currently being held are released.

Preempted resources are added to the list of resources for which the process is waiting.

Process will be restarted only when it can regain its old resources, as well as the new ones

that it is requesting.

4. Circular Wait – impose a total ordering of all resource types, and require that each process

requests resources in an increasing order of enumeration.

Deadlock Avoidance

Requires that the system has some additional a priori information available.

1. Simplest and most useful model requires that each process declare the maximum number of

resources of each type that it may need.

2. The deadlock-avoidance algorithm dynamically examines the resource-allocation state to

ensure that there can never be a circular-wait condition.

3. Resource-allocation state is defined by the number of available and allocated resources, and

the maximum demands of the processes.

Safe State

1. When a process requests an available resource, system must decide if immediate allocation

leaves the system in a safe state.

2. System is in safe state if there exists a safe sequence of all processes.

3. Sequence <P1, PϮ, …, Pn> is safe if for each Pi, the resources that Pi can still request can be

satisfied by currently available resources + resources held by all the Pj, with j<I.

 a. If Pi resource needs are not immediately available, then Pi can wait until all Pj have

 finished.

 b. When Pj is finished, Pi can obtain needed resources, execute, return allocated

 resources, and terminate.

 c. When Pi terminates, Pi+1 can obtain its needed resources, and so on.

Basic Facts

1. If a system is in safe state no deadlocks.

2. If a system is in unsafe state possibility of deadlock.

3. Avoidance ensure that a system will never enter an unsafe state.

 we dont take any liability for the notes correctness. http://www.rgpvonline.com

5

Safe, Unsafe , Deadlock State

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain resource allocation

graph for deadlock avoidance

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

6

Unit-03/Lecture-03

 Resource-Allocation Graph Algorithm

1. Claim edge Pi Rj indicated that process Pj may request resource Rj; represented by a dashed

line.

2. Claim edge converts to request edge when a process requests a resource.

3. When a resource is released by a process, assignment edge reconverts to a claim edge.

4. Resources must be claimed a priori in the system.

Resource-Allocation Graph For Deadlock

Avoidance

Unsafe State In Resource-Allocation Graph

Banker’s Algorithm

1. Multiple instances.

2. Each process must a priori claim maximum use.

3. When a process requests a resource it may have to wait.

4. When a process gets all its resources it must return them in a finite amount of time.

Data Structures for the Banker’s Algorithm

Let n = number of processes, and m = number of resources types.

1. Available: Vector of length m. If available [j] = k, there are k instances of resource type Rj

available.

2. Max: n x m matrix. If Max [i,j] = k, then process Pi may request at most k instances of

resource type Rj.

3. Allocation: n x m matrix. If Allocation[i,j] = k then Pi is currently allocated k instances of Rj.

4. Need: n x m matrix. If Need[i,j] = k, then Pi may need k more instances of Rj to complete its

task.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

7

5. Need [i,j] = Max[i,j] – Allocation [i,j].

Safety Algorithm

1.Let Work and Finish be vectors of length m and n, respectively. Initialize:

Work = Available

Finish [i] = false for i - ϭ,ϯ, …, n.

2.Find and i such that both:

(a) Finish [i] = false

(b) Needi Work

If no such i exists, go to step 4.

3.Work = Work + Allocationi Finish[i] = true go to step 2.

4.If Finish [i] == true for all i, then the system is in a safe state.

Resource-Request Algorithm for Process Pi

Request = request vector for process Pi. If Requesti [j] = k then process Pi wants k instances of

resource type Rj.

1.If Requesti Needi go to step 2. Otherwise, raise error condition, since process has exceeded its

maximum claim.

2.If Requesti Available, go to step 3. Otherwise Pi must wait, since resources are not available.

3.Pretend to allocate requested resources to Pi by modifying the state as follows:

Available = Available = Requesti;

Allocationi = Allocationi + Requesti;

Needi = Needi – Requesti;;

• If safe the resources are allocated to Pi.

• If unsafe Pi must wait, and the old resource-allocation state is restored

Example of Banker’s Algorithm

1. 5 processes P0 through P4; 3 resource types A (10 instances), B (5instances, and C (7

instances).

2. Snapshot at time T0:

Allocation Max Available

A B C A B C A B C

P0 0 1 0 7 5 3 3 3 2

P1 2 0 0 3 2 2

P2 3 0 2 9 0 2

P3 2 1 1 2 2 2

P4 0 0 2 4 3 3

3. The content of the matrix. Need is defined to be Max – Allocation.

Need

A B C

P0 7 4 3

P1 1 2 2

P2 6 0 0 we dont take any liability for the notes correctness. http://www.rgpvonline.com

8

P3 0 1 1

P4 4 3 1

4. The system is in a safe state since the sequence < P1, P3, P4, P2, P0> satisfies safety criteria.

Example P1 Request (1,0,2) (Cont.)

1. Check that Request Available (that is, (1,0,2) (3,3,2) true.

Allocation Need Available

A B C A B C A B C

P0 0 1 0 7 4 3 2 3 0

P1 3 0 2 0 2 0

P2 3 0 1 6 0 0

P3 2 1 1 0 1 1

P4 0 0 2 4 3 1

1. Executing safety algorithm shows that sequence <P1, P3, P4, P0, P2> satisfies safety

requirement.

2. Can request for (3,3,0) by P4 be granted?

3. Can request for (0,2,0) by P0 be granted?

S.NO RGPV QUESTION YEAR MARKS

Q.1 Describe Bankers Algorithm with example Dec 2011,

Dec 2013

10

7

Q.2 Consider following snapshot

Dec 2012 14

we dont take any liability for the notes correctness. http://www.rgpvonline.com

9

Unit-03/Lecture-04

Deadlock Detection

1. Allow system to enter deadlock state

2. Detection algorithm

3. Recovery scheme

Single Instance of Each Resource Type

1. Maintain wait-for graph

a. Nodes are processes.

b. Pi Pj if Pi is waiting for Pj.

2. Periodically invoke an algorithm that searches for a cycle in the graph.

3. An algorithm to detect a cycle in a graph requires an order of n2 operations, where n is the

number of vertices in the graph.

Resource-Allocation Graph and Wait-for Graph

 a. Resource-Allocation Graph b.Corresponding wait-for graph

Several Instances of a Resource Type

1. Available: A vector of length m indicates the number of available resources of each type.

2. Allocation: An n x m matrix defines the number of resources of each type currently allocated

to each process.

3. Request: An n x m matrix indicates the current request of each process. If Request [ij] = k,

then process Pi is requesting k more instances of resource type. Rj.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

10

Detection Algorithm

1. Let Work and Finish be vectors of length m and n, respectively Initialize:

(a) Work = Available

(b) For i = ϭ,Ϯ, …, n, if Allocationi 0, then Finish[i] = false;otherwise, Finish[i] = true.

2. Find an index i such that both:

(a) Finish[i] == false

(b) Requesti Work

If no such i exists, go to step 4.

3. Work = Work + Allocationi Finish[i] = true go to step 2.

4. If Finish[i] == false, for some i, 1 i n, then the system is in deadlock state. Moreover, if

Finish[i] == false, then Pi is deadlocked.

Algorithm requires an order of O(m x n2) operations to detect whether the system is in

deadlocked state.

Example of Detection Algorithm

1.Five processes P0 through P4; three resource types A (7 instances), B (2 instances), and C (6

instances).

2.Snapshot at time T0:

Allocation Request Available

A B C A B C A B C

P0 0 1 0 0 0 0 0 0 0

P1 2 0 0 2 0 2

P2 3 0 3 0 0 0

P3 2 1 1 1 0 0

P4 0 0 2 0 0 2

3.Sequence <P0, P2, P3, P1, P4> will result in Finish[i] = true for all i.

4.P2 requests an additional instance of type C.

Request

A B C

P0 0 0 0

P1 2 0 1

P2 0 0 1

P3 1 0 0

P4 0 0 2

5.State of system

o Can reclaim resources held by process P0, but insufficient resources to fulfill other processes;

requests.

o Deadlock exists, consisting of processes P1, P2, P3, and P4.

Detection-Algorithm Usage

1. When, and how often, to invoke depends on:

a. How often a deadlock is likely to occur?

b. How many processes will need to be rolled back?

i. one for each disjoint cycle we dont take any liability for the notes correctness. http://www.rgpvonline.com

11

2. If detection algorithm is invoked arbitrarily, there may be many cycles in the resource graph

and so we would not be able to tell which of the many deadlocked processes ͞caused͟ the

deadlock.

Recovery from Deadlock: Process Termination

1. Abort all deadlocked processes.

2. Abort one process at a time until the deadlock cycle is eliminated.

3. In which order should we choose to abort?

a. Priority of the process.

b. How long process has computed, and how much longer to completion.

c. Resources the process has used.

d. Resources process needs to complete.

e. How many processes will need to be terminated.

f. Is process interactive or batch?

Recovery from Deadlock: Resource Preemption

1. Selecting a victim – minimize cost.

2. Rollback – return to some safe state, restart process for that state.

3. Starvation – same process may always be picked as victim, include number of rollback in cost

factor

Combined Approach to Deadlock Handling

1. Combine the three basic approaches

a. prevention

b. avoidance

c. detection

allowing the use of the optimal approach for each of resources in the system.

2. Partition resources into hierarchically ordered classes.

3. Use most appropriate technique for handling deadlocks within each class.

S.NO RGPV QUESTION YEAR MARKS

Q.1 What are deadlock detection

and recovery schemes?

Describe deadlock detection

algorithm in detail

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

12

Unit-03/Lecture-05

 Memory Management Background

 Program must be brought into memory and placed within a process memory space for it to be

executed

 Input queue – collection of processes on the disk that are waiting to be brought into memory

to run the program

 User programs (Applications) go through several steps before being run

 Applications' view of the Memory:

Binding of Instructions and Data to Memory

 Compile time: If memory location is known a priori, absolute code can be generated; must

recompile code if starting location changes

 Load time: Must generate relocatable code if memory location is not known at compile time

 Execution time: Binding delayed until run time if the process can be moved during its

execution from one memory segment to another. Need hardware support for address maps

(e.g., base and limit registers).

we dont take any liability for the notes correctness. http://www.rgpvonline.com

13

Logical vs. Physical Address Space

 The concept of a logical address space that is bound to a separate physical address space is

central to proper memory management

 Logical address – generated by the CPU; also referred to as virtual address

 Physical address – the address seen by the memory unit

 Logical and physical addresses are the same in compiletime and load-time address-binding

schemes

 Logical (virtual) and physical addresses differ within the execution-time address-binding

scheme

Memory-Management Unit (MMU)

 Hardware device that maps virtual to physical address

 In MMU scheme, the value in the relocation register is added to every address generated by a

user process at the time it is sent to memory

 The user program deals with logical addresses; it never sees the real physical addresses

Dynamic Loading

_ Routine is not loaded until it is called

_ Better memory-space utilization; unused routine is never loaded

_ Useful when large amounts of code are needed to handle infrequently occurring cases

we dont take any liability for the notes correctness. http://www.rgpvonline.com

14

_ No special support from the operating system is required;

implemented through program design (overlays)

Dynamic Linking

_ Linking postponed until execution time

_ Small piece of code, stub, placed instead of the real procedure call – used to locate the

appropriate memory resident library routine

_ Stub replaces itself with the address of the routine, and executes the routine

_ Operating system support needed to check if the routine is in memory and addressable by the

process

_ Dynamic linking is particularly useful for libraries

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain memory management

in multiprogramming

environment.

Dec 2013 7

Q.2 Differentiate b/w

a)Logical & physical address

space

b)Static & dynamic relocation

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

15

Unit-03/Lecture-06

Swapping

_ A process' memory can be swapped temporarily out of memory to a backing store, and then

brought back into memory for continued execution

_ Backing store – fast disk large enough to accommodate copies of all memory images for all

users; must provide direct access to these memory images

_ Roll out, roll in – swapping variant used for priority-based scheduling algorithms; lower-

priority process is swapped out so higher-priority process can be loaded and executed

_ Major part of swap time is transfer time; total transfer time is directly proportional to the

amount of memory swapped

Contiguous Allocation

 Main memory is usually split into two partitions:

 Resident operating system, usually held in low memory with interrupt vector

 User processes then held in high memory

 Single-partition allocation

_ Relocation-register scheme used to protect user processes from each other, and from

changing operating-system code and data

_ Relocation register contains value of smallest physical address;

_ limit register contains range of logical addresses – each logical address must be less than the

limit register

we dont take any liability for the notes correctness. http://www.rgpvonline.com

16

Multiple-partition allocation

 Hole – block of available memory; holes of various size are scattered throughout memory

 When a process arrives, it is allocated memory from a hole large enough to accommodate it

 Operating system maintains information about:

a) allocated partitions b) free partitions (holes)

Holes in Memory Space

_ Contiguous allocation produces holes

_ Holes are produced also by other allocation strategies

Dynamic Storage-Allocation Problem

First-fit: Allocate the first hole that is big enough

_ Fastest method

Best-fit: Allocate the smallest hole that is big enough;

_ Must search entire list, unless ordered by size. Produces the smallest leftover hole

_ Good storage utilization

Worst-fit: Allocate the largest hole; must also search entire list. Produces the largest leftover

hole.

_ Low storage fragmentation

Fragmentation

 External Fragmentation

_ Total free memory space exists to satisfy a request, but it is not contiguous and contiguous

space is required

 Internal Fragmentation

 Memory is allocated using some fixed size memory ͞partitions͟

we dont take any liability for the notes correctness. http://www.rgpvonline.com

17

 Allocation size often defined by hardware

 Allocated memory may be slightly larger than requested memory; this size difference is

memory internal to a partition, but not being used

 A compromise is needed:

 Large partitions – too high internal fragmentation

 Small partitions – too many of partitions to administer

 Reduce external fragmentation by compaction

 Shuffle memory contents to place all free memory together in one large block

 Compaction is possible only if relocation is dynamic, and is done at execution time

Paging

Contiguous logical address space of a process can be mapped to noncontiguous physical

allocation

 process is allocated physical memory whenever the latter is available

 Divide physical memory into fixed-sized blocks called frames (size is power of 2, between 512

bytes and 8192 bytes)

 Divide logical memory into blocks of same size called pages

_ Keep track of all free frames

_ To run a program of size n pages, need to find n free frames and load program

_ Set up a page table to translate logical to physical addresses

_ Internal fragmentation may occur

S.NO RGPV QUESTION YEAR MARKS

Q.1 Differentiate b/w

a)Internal & External

 Fragmentation

b)First fit, best fit & worst fit

Dec 2012

Dec 2011

10

8

Q.2

Dec 2013 7

we dont take any liability for the notes correctness. http://www.rgpvonline.com

18

Unit-03/Lecture-07

Paging Address Translation Principle

Address Translation Scheme

 Address generated by CPU is divided into:

 Page number (p) – used as an index into a page table which contains base address of each page

in physical memory

 Page offset (d) – combined with base address to define the physical memory address that is

sent to the memory unit

we dont take any liability for the notes correctness. http://www.rgpvonline.com

19

Implementation of Page Table

 Paging is implemented in hardware

 Page table is kept in main memory

 Page-table base register (PTBR) points to the page table

 Page-table length register (PTLR) indicates size of the page table

 In this scheme every data/instruction access requires two memory accesses. One for the page

table and one for the data/instruction.

 The two memory access problem can be solved by the use of a special fast-lookup hardware

cache called associative memory or translation look-aside buffers (TLBs)

Associative Memory

 Associative memory – parallel search – VERY COMPLEX CIRCUITRY

Address translation ;P# → F#Ϳ
 If P# is in associative register, get F# out

 Otherwise get F# from page table in memory

Paging Hardware With TLB

 we dont take any liability for the notes correctness. http://www.rgpvonline.com

20

Paging Properties

 Effective Access Time with TLB

 Associative Lookup = e time unit

 Assume memory cycle time is 1 microsecond

 Hit ratio – percentage of times that a page number is found in the associative registers; ration

related to number of associative registers,

Hit ratio = a

 Effective Access Time (EAT)

EAT = (1 + e) a + (2 + e)(1 – a)

= 2 + e – a

 Memory protection implemented by associating protection bit with each page

 Usually two bits: Read-Only bit, Dirty bit (used as described later)

 Valid-invalid bit attached to each entry in the page table:

 ͞valid͟ indicates that the associated page is in the process’ logical address space, and is thus a

legal page

 ͞invalid͟ indicates that the page is not in the process’ logical address space

Valid (v) or Invalid (i) Bit In A Page Table

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain paging and

implementation of page table

Dec 2009 8

we dont take any liability for the notes correctness. http://www.rgpvonline.com

21

Unit-03/Lecture-08

Page Table Structures

**Hierarchical Paging

**Hashed Page Tables

**Inverted Page Tables

Hierarchical Page Tables

 Break up the logical address space into multiple page tables

 A simple technique is a two-level page table

 A logical address (on 32-bit machine with 4K page size) is divided into:

_ a page number consisting of 20 bits

_ an offset within page consisting of 12 bits

 The page table itself can also be paged, the page number can be further divided into:

_ a 10-bit page number

_ a 10-bit page offset

Thus, a logical address is:

where pi is an index into the outer page table, and p2

is the displacement within the page of the outer page table

Two-Level Page-Table Scheme

Hashed Page Tables

_ Common for address spaces > 32 bits

_ The virtual page number is hashed into a page table. This page table contains a chain of

elements hashing to the same location.

_ Virtual page numbers are compared in this chain searching for a match. If a match is found,

the corresponding physical frame is extracted.

we dont take any liability for the notes correctness. http://www.rgpvonline.com

22

Inverted Page Table

_ One entry for each frame of real memory

_ Entry consists of the virtual address of the page stored in that real memory location, with

information about the process that owns that page

_ Decreases memory needed to store each page table, but increases time needed to search the

table when a page reference occurs

Main advantage:

_ only one PT for all processes

_ Use hash table to limit the search to one –

or at most a few –page-table entries

.

S.NO RGPV QUESTION YEAR MARKS

Q.1 Discuss structure of page table Dec 2010 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

23

Unit-03/Lecture-09

Segmentation

 Memory-management scheme that supports user view of memory

 A program is a collection of segments. A segment is a logical unit such as: main program,

procedure, function, method, object, local variables, global variables, common block, stack,

symbol table, arrays

User’s View of a Program

Logical View of Segmentation

 we dont take any liability for the notes correctness. http://www.rgpvonline.com

24

Segmentation Architecture

 Logical address consists of a couple:

<segment-number, offset>,

 Segment table – maps two-dimensional physical addresses; each table entry has:

 base – contains the starting physical address where the segments reside in memory

 limit – specifies the length of the segment

 Segment-table base register (STBR) points to the segment table’s location in memory

 Segment-table length register (STLR) indicates number of segments used by a program;

segment number s is legal if s < STLR

Relocation

 dynamic by segment table

 Sharing

 shared segments – same segment number

 Allocation.

 first fit/best fit – external fragmentation

 Protection. With each entry in segment table associate:

 validation bit = 0 ⇒ illegal segment

 read/write/execute privileges

 Protection bits associated with segments; code sharing occurs at segment level

 Since segments vary in length, memory allocation is a dynamic storage-allocation problem

 A segmentation example is shown in the following Diagram

Address Translation Architecture

we dont take any liability for the notes correctness. http://www.rgpvonline.com

25

Example of Segmentation

Sharing of Segments

we dont take any liability for the notes correctness. http://www.rgpvonline.com

26

Segmentation with Paging – Intel IA32

 IA32 architecture

 uses segmentation with paging for memory management with a two-level paging scheme

S.NO RGPV QUESTION YEAR MARKS

Q.1 Explain segmentation with

paging.

Dec 2012 7

Q.2 Explain why sharing of

segmentation is used when

pure paging is used.

Dec 2012 10

we dont take any liability for the notes correctness. http://www.rgpvonline.com

