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UNIT-I 
Virtual work and Energy Principles: Principles of Virtual work applied to deformable bodies, strain 
eŶeƌgǇ aŶd ĐoŵpleŵeŶtaƌǇ eŶeƌgǇ, EŶeƌgǇ theoƌeŵs, Maǆǁell͛s ReĐipƌoĐal theoƌeŵ, AŶalǇsis of PiŶ-
Jointed frames for static loads.  

Energy Methods in Structural Analysis  
Virtual Work 
Introduction  

. Fƌoŵ CastigliaŶo͛s theoƌeŵ it folloǁs that foƌ the statiĐallǇ deteƌŵiŶate stƌuĐtuƌe; the paƌtial 
derivative of strain energy with respect to external force is equal to the displacement in the direction 
of that load. In this lesson, the principle of virtual work is discussed. As compared to other methods, 
virtual work methods are the most direct methods for calculating deflections in statically determinate 
and indeterminate structures. This principle can be applied to both linear and nonlinear structures. 
The principle of virtual work as applied to deformable structure is an extension of the virtual work for 
rigid bodies. This may be stated as: if a rigid body is in equilibrium under the action of a system of 
forces and if it continues to remain in equilibrium if the body is given a small (virtual) displacement, 
theŶ the ǀiƌtual ǁoƌk doŶe ďǇ the F−F−sǇsteŵ of foƌĐes as ͚it ƌides͛ aloŶg these ǀiƌtual displaĐeŵeŶts 
is zero.  

Complementary Strain Energy: 

Consider the stress strain diagram as shown Fig 1.1. The area enclosed by the inclined line and the 
vertical axis is called the complementary strain energy. For a linearly elastic material the 
complementary strain energy and elastic strain energy are the same.  

    

Figure 1.1: Stress strain diagram. 

Let us consider elastic nonlinear prismatic bar subjected to an axial load. The resulting stress strain 
plot is as shown.  
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Figure 1.2: The resulting Stress strain diagram. 

The new term complementary work is defined as follows  

 

 

Figure 1.3: The resulting Stress strain diagram. 

So in geoŵetƌiĐ seŶse the ǁoƌk W* is the ĐoŵpleŵeŶt of the ǁoƌk ͚W' ďeĐause it Đoŵpletes ƌeĐtaŶgle 
as shown in the above figure  

Complementary Energy  

 

Likewise the complementary energy density u* is obtained by considering a volume element 
subjected to the stress s1 and Î1, in a manner analogous to that used in defining the strain energy 
density. Thus  
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The complementary energy density is equal to the area between the stress strain curve and the stress 
axis. The total complementary energy of the bar may be obtained from u* by integration  

 

Sometimes  the  complementary  energy  is  also  called  the  stress  energy.  Complementary  Energy  is 
expressed in terms of the load and that the strain energy is expressed in terms of the displacement.  

Castigliano's  Theorem:  Strain  energy  techniques  are  frequently  used  to  analyze  the  deflection  of 
beam  and  structures.  Castigliano's  theorem  were  developed  by  the  Italian  engineer  Alberto 
Castigliano  in  the  year  1873,  these  theorems  are  applicable  to  any  structure  for  which  the  force 
deformation relations are linear  

Castigliano's Theorem:  

 

Figure 1.4: The loaded beam. 

Consider a loaded beam as shown in figure 1.4 

Let  the  two  Loads  P1  and  P2  produce  deflections  Y1  and  Y2 respectively  strain  energy  in  the beam  is 
equal to the work done by the forces.  

 

Let the Load P1 be increased by an amount DP1.  

Let DP1 and DP2 be the corresponding changes in deflection due to change in load to DP1.  

Now the increase in strain energy  

Suppose the increment in load is applied first followed by P1 and P2 then the resulting strain energy is  

 

Since the resultant strain energy is independent of order loading,  
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Combing equation 1, 2 and 3. One can obtain  

 

or upon taking the limit as DP1 approaches zero [ Partial derivative are used because the strain energy 
is a function of both P1 and P2 ]  

 

For a general case there may be number of loads, therefore, the equation (6) can be written as  

 

The above equation is castigation's theorem:  

The statement of this theorem can be put forth as follows; if the strain energy of a linearly elastic 
structure is expressed in terms of the system of external loads. The partial derivative of strain energy 
with respect to a concentrated external load is the deflection of the structure at the point of 
application and in the direction of that load.  

In a similar fashion, CastigliaŶo͛s theorem can also be valid for applied moments and resulting 
rotations of the structure  

 

Where  

Mi = applied moment  

qi = resulting rotation  

 

Castigliano's First Theorem:  
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In  similar  fashion  as  discussed  in  previous  section  suppose  the  displacement  of  the  structure  are 
changed by a small amount ddi. While all other displacements are held constant the increase in strain 
energy can be expressed as  

 

Where  

¶U / di ® is the rate of change of the strain energy w.r.t di.  

It may be seen that, when the displacement di is increased by the small amount dd ; work done by the 
corresponding force only since other displacements are not changed.  

The work which is equal to Piddi is equal to increase in strain energy stored in the structure  

 

By rearranging the above expression, the Castigliano's first theorem becomes  

 

The  above  relation  states  that  the  partial  derivative  of  strain  energy  w.r.t.  any  displacement  d i  is 
equal  to  the  corresponding  force  Pi  provided  that  the  strain  is  expressed  as  a  function  of  the 
displacements.  

 

Maxwell-Betti Law of Reciprocal Deflections 

Maxwell-Betti  Law  of  real  work  is  a  basic  theorem  in  the  structural  analysis.  Using  this  theorem, 
it  will  be established  that  the  flexibility  coefficients  in  compatibility  equations,  formulated  to 
solve  indeterminate structures  by  the  flexibility  method,  form  a  symmetric  matrix  and  this  will 
reduce the number of deflection computations.  The  Maxwell-Betti  law  also  has  applications  in  the 
construction  of  influence  lines  diagrams for statically  indeterminate  structures.  The  Maxwell-Betti 
law,  which  applies  to  any  stable  elastic  structure  (a beam,  truss,  or  frame,  for  example)  on 
unyielding supports and at constant temperature, states: 

The deflection of point A in direction 1 due to unit load at point B in direction 2 is equal in the 
magnitude  to  the  deflection  of  point  B  in  direction  2  produced  by  a  unit  load  applied  at  A  in 
direction 1. 

The  Figure  4.31  explains  the  Maxwell-Betti  Law  of  reciprocal  displacements  in  which,  the 

displacement   is  equal to the displacement. 
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In order to prove the reciprocal theorem, consider the simple beams shown in Figure 4.32. Let a 

vertical force  at point B produces a vertical deflection   at point A and at point B as shown 

in Figure 4.32(a). Similarly, in Figure 4.32(b) the application of a vertical force at point A produces 

a vertical deflections and  at points A and B, respectively. Let us evaluate the total work done 

by the two forces  and      when they are applied in different order to the zero to their final value. 

Case 1:  applied and followed by   

(a) Work done when  is gradually applied 

 s 
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(b) Work done when  is gradually applied with  in place 

 

Total work done by the two forces for case 1 is 
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Case2:  applied and followed by   

(c) Work done when  is gradually applied 

 

(d) Work done when  is gradually applied with  in place 

 

 

Total work done by the two forces for case 2 is  

 

 

Since the final deflected position of the beam produced by the two cases of loads is the same 

regardless of the order in which the loads are applied. The total work done by the forces is also the 

same regardless of the order in which the loads are applied. Thus, equating the total work of Cases 1 

and 2 give 

 

 

 

 

If , the equation (4.31) depicts the statement of the Maxwell-Betti law i.e. 

 

The Maxwell-Betti theorem also holds for rotations as well as rotation and linear displacement in 
beams and frames. 

Example 4.21 Verify Maxwell-Betti law of reciprocal displacement for the direction 1 and 2 of the pin-
jointed structure shown in Figure (a). 
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Solution: Apply the forces  and  in the direction 1 and 2, respectively. The calculation of total 
strain energy in the system is given in Table 4.5. 

 

 

 

Table 4.5 

 

Membe
r 

Length Force P  

AB 

 

L -( )  

AC L P 1  
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Since , hence the Maxwell-Betti law of reciprocal displacement is proved. 

Example: Verify Maxwell-Betti law of reciprocal displacement for the cantilever beam shown in 
Figure 4.34(a). 

 

 

Solution: Apply the forces  and  in the directions 1 and 2, respectively. The total strain energy 
stored is calculated below. 

Consider any point X at a distance x from B. 
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Since , the Maxwell-Betti law of reciprocal displacement is proved. 

Example: Verify Maxwell-Betti law of reciprocal displacement for the rigid-jointed plane frame 
with reference to marked direction as shown in Figure 4.35(a). EI is same for both members. 

 

Solution: Apply the forces and in the directions 1 and 2, respectively as shown in Figure (b). 
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Consider AB: (x measured from A) 

 

 

 

Consider BC: (x measured from B) 

 

Thus 

 

The displacement in the direction 1 due to unit load applied in 2 is 
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The displacement in the direction 2 due to unit load applied in 1 is 

 

Since , proves the Maxwell-Betti law of reciprocal displacements. 
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Unit II 

Indeterminate Structures-I: Static and Kinematics indeterminacy, Analysis of Fixed and 

continuous beams by theorem of three moments, Effect of sinking and rotation of supports, 

Moment distribution method (without sway)  

Three Moment Equation 

The continuous beams are very common in the structural design and it is necessary to 

develop simplified force method known as three moment equation for their analysis. This 

equation is a relationship that exists between the moments at three points in continuous 

beam. The points are considered as three supports of the indeterminate beams. Consider 

three points on the beam marked as 1, 2 and 3 as shown in Figure (a). Let the bending 

moment at these points is M1, M2 and M3, and the corresponding vertical displacement of 

these poiŶts aƌe Δ1, Δ2aŶd Δ3, respectively. Let L1 and L2 be the distance between points 1 – 

2 and 2 – 3, respectively. 

 

The continuity of deflected shape of the beam at point 2 gives 

Θ21 = θ23     Equations 5.4 
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From the Figure 5.25(d) 

Θ21 = θ1 – β21 aŶd     Θ23 = θ3 – β23 

Where  

Θ1 = ;Δ1 – Δ2)/L1 aŶd   Θ3 = ;Δ3 – Δ2)/L2 

 Using the bending moment diagrams shown in Figure 5.25(c) and the second moment area 

theorem, 

  Θ21 = [1/(L1*E*I1)]*{(M1L1
2/6) +(M2L1

2/3) + (A1X1͛Ϳ]     Equations  5.7 

  Θ23 = [1/(L2*E*I2)]*{(M3L1
2/6) +(M2L1

2/3) + (A2X2͛Ϳ]     Equations  5.8 

Where A1 and A2 are the areas of the bending moment diagram of span 1-2 and 2-3, 

respectively considering the applied loading acting as simply supported beams. 

Substituting from Equation (5.7) and Equation (5.8) in Equation (5.4) and Equation (5.5). 

M1(L1/I1) + 2M2[(L1/I1) + (L2/I2)] + M3(L2/I2) = -6*A1*X1͛/ ;I1*L1) –  

                             6*A2*X2͛/;I2*L2Ϳ + ϲ*E [;Δ2 – Δ1)/L1 + [;Δ2 – Δ3)/L2] 

The above is known as three moment equation. 

Sign Conventions 

The M1, M2 and M3 are positive for sagging moment and negative for hogging moment. 

Similarly, areas A1, A2 and A3 are positive if it is sagging moment and negative for hogging 

ŵoŵeŶt. The displaĐeŵeŶts Δϭ, ΔϮ aŶd Δϯ aƌe positiǀe if ŵeasuƌed doǁŶǁaƌd fƌoŵ the 
reference axis. 

 

MOMENT DISTRIBUTION METHOD 

Introduction 

In the previous lesson we discussed the slope-deflection method. In slope-deflection 
analysis, the unknown displacements (rotations and translations) are related to the 
applied loading on the structure. The slope-deflection method results in a set of 
simultaneous equations of unknown displacements. The number of simultaneous 
equations will be equal to the number of unknowns to be evaluated. Thus one needs to 
solve these simultaneous equations to obtain displacements and beam end moments. 
Today, simultaneous equations could be solved very easily using a computer. Before the 
advent of electronic computing, this really posed a problem as the number of equations in 
the case of multistory building is quite large. The moment-distribution method proposed 
by Hardy Cross in 1932, actually solves these equations by the method of successive 
approximations. In this method, the results may be obtained to any desired degree of 
accuracy. Until recently, the moment-distribution method was very popular among 

  

Page no: 15



 

 

engineers. It is very simple and is being used even today for preliminary analysis of small 
structures. It is still being taught in the classroom for the simplicity and physical insight it 
gives to the analyst even though stiffness method is being used more and more. Had the 
computers not emerged on the scene, the moment-distribution method could have turned 
out to be a very popular method. In this lesson, first moment-distribution method is 
developed for continuous beams with unyielding supports. 

Basic Concepts 

In moment-distribution method, counterclockwise beam end moments are taken as 
positive. The counterclockwise beam end moments produce clockwise moments on the 
joint Consider a continuous beam ABCD as shown in Fig.18.1a. In this beam, ends A and D 
are fixed and hence, θ A = θ D = 0 .Thus, the deformation of this beam is completely defined 
by rotations θ B and C respectively. The required equation to eǀaluate θ B and considering 
equilibrium of joints B and C. Hence, 

∑M B 
= 0 ⇒ M BA + M BC = 0 (18.1a) 

∑M C 
= 0 ⇒ M CB + M CD = 0 (18.1b) 

According to slope-deflection equation, the beam end moments are written as 

MBA = MF
BA + ;ϮEI/LͿ ;Ϯ θB + θA)        

(4EI/L) is known as stiffness factor for the beam AB and it is denoted by k AB. M BA
F is the 

fixed end moment at joint B of beam AB when joint B is fixed. 
 

Thus, 

M BA = M BA
F + K ABθ B 

M CD = M CD
F + KCDθC (18.2) 

In Fig.18.1b, the counterclockwise beam-end moments M BA  
and 

M BC   

produce 

A clockwise moment M B on the joint as shown in Fig.18.1b. To start with, in moment-
distribution method, it is assumed that joints are locked i.e. joints are prevented from 
rotating. In such a case (vide Fig.18.1b), 

θ B = θ C = 0 , and hence 

 

M BA = M BA
F  

M BC = M BC
F  

M CB = M CB
F  

M CD = M CD
F (18.3) 
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Since joints B and C are artificially held locked, the resultant moment at joints B and C will 

not be equal to zero. This moment is denoted by M B and is known as the unbalanced 

moment. 
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Thus, 

M B = M BA
F + M BC

F 

In reality joints are not locked. Joints B and C do rotate under external loads. When the 

joint B is unlocked, it will rotate under the action of unbalanced moment M B. Let the joint 

B rotate by an angle θ B1, under the action of M B. This will deform the structure as shown 

in Fig.18.1d and introduces distributed moment M BA
d

, M BC
d in the span BA and BC 

respectively as shown in the figure. 

The unknown distributed moments are assumed to be positive and hence act in 
counterclockwise direction. The unbalanced moment is the algebraic sum of the fixed end 
moments and act on the joint in the clockwise direction. The unbalanced moment restores 
the equilibrium of the joint B. Thus,  

∑M B = 0,   M BA
d + M BC

d + M B = 0                               (2.4) 

The distƌiďuted ŵoŵeŶts aƌe ƌelated to the ƌotatioŶ θB1 by the slope- deflection equation. 

M BA
d = K BAθ B1  

M BC
d = K BCθ B1                                             (2.5) 

Substituting equation (18.5) in (18.4), yields 

θB1 (K BA + K BC) = −M B 

θB1 = M B/ (K BA + K BC) 

In general, where summation is taken over all the members meeting at that particular 
joint. Substituting the value of θ B1 in equation (2.5), distributed moments are calculated. 
Thus, the ratio ∑KBA

K is known as the distribution factor and is represented by DFBA. 

Thus, M BA
d = −DFBA. M B 

M BC
d = −DFBC. M B (2.8) 

The distribution moments developed in a member meeting at B, when the joint B is 
unlocked and allowed to rotate under the action of unbalanced moment M B is equal to a 
distribution factor times the unbalanced moment with its sign reversed. 

As the joint B rotates under the action of the unbalanced moment, beam end moments are 

developed at ends of members meeting at that joint and are known as distributed 

moments. As the joint B rotates, it bends the beam and beam end moments at the far ends 

(i.e. at A and C) are developed. They are known as carry over moments. Now consider the 

beam BC of continuous beam ABCD. 

When the joint B is unlocked, joint C is locked .The joint B rotates by θ B1 under the action 

of unbalanced moment M B (vide Fig. 18.1e). Now from slope-deflection equations 
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The carry over moment is one half of the distributed moment and has the same sign. With 

the above discussion, we are in a position to apply moment-distribution method to 

statically indeterminate beam. Few problems are solved here to illustrate the procedure. 

Carefully go through the first problem, wherein the moment-distribution method is 

explained in detail. 

Example  

A continuous prismatic beam ABC (see Fig.2.2a) of constant moment of inertia is carrying a 

uniformly distributed load of 2 kN/m in addition to a concentrated load of 10 kN. Draw 

bending moment diagram. Assume that supports are unyielding 

Solution 

Assuming that supports B and C are locked, calculate fixed end moments developed in the 
beam due to externally applied load. Note that counterclockwise moments are taken as 

positive. 

MAB = 1.5 kN M. 

MBA = - 1.5 kN M. 

MBC = 5 kN M. 

MCB = -5 kN M. 

Before we start analyzing the beam by moment-distribution method, it is required to 

calculate stiffness and distribution factors. 

At C:  ∑ K = EI 

DFCB = 1.0 

Note that distribution factor is dimensionless. The sum of distribution factor at a joint, 
except when it is fixed is always equal to one. The distribution moments are developed 
only when the joints rotate under the action of unbalanced moment. In the case of fixed 
joint, it does not rotate and hence no distribution moments are developed and 
consequently distribution factor is equal to zero. 
 

In Fig.18.2b the fixed end moments and distribution factors are shown on a working 

diagram. In this diagram B and C are assumed to be locked. 

 

 

 

 

 

Now unlock the joint C. Note that joint C starts rotating under the unbalanced moment of 
5 kN.m (counterclockwise) till a moment of -5 kN.m is developed (clockwise) at the joint. 
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This in turn develops a beam end moment of +5 kN.m (M CB). This is the distributed 
moment and thus restores equilibrium. Now joint C is relocked and a line is drawn below 
+5 kN.m to indicate equilibrium. When joint C rotates, a carryover moment of +2.5 kN.m is 
developed at the B end of member BC. These are shown in Fig.18.2c. 

 

 

 

 

 

When joint B is unlocked, it will rotate under an unbalanced moment equal to algebraic 
sum of the fixed end moments(+5.0 and -1.5 kN.m) and a carryover moment of +2.5 kN.m 
till distributed moments are developed to restore equilibrium. The unbalanced moment is 
6 kN.m. Now the distributed moments M BC and M BA are obtained by multiplying the 
unbalanced moment with the corresponding distribution factors and reversing the sign. 
Thus, M BC = −2.574 kN.m and M BA = −3.426kN.m. These distributed moments restore the 
equilibrium of joint B. Lock the joint B. This is shown in Fig.18.2d along with the carry over 
moments. 

 

 

 

 

 

 

 

Now, it is seen that joint B is balanced. However joint C is not balanced due to the carry 

over moment -1.287 kN.m that is developed when the joint B is allowed to rotate. The 

whole procedure of locking and unlocking the joints C and B successively has to be 

continued till both joints B and C are balanced simultaneously. The complete procedure is 

shown in Fig.18.2e. 
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The iteration procedure is terminated when the change in beam end moments is less than 

say 1%. In the above problem the convergence may be improved if we leave the hinged 
end C unlocked after the first cycle. This will be discussed in the next section. In such a case 

the stiffness of beam BC gets modified. The above calculations can also be done 

conveniently in a tabular form as shown in Table 18.1. However the above working 
method is preferred in this course. 

Table 18.1 Moment-distribution for continuous beam ABC 

Joint A B  C 

Me
mbe
r AB BA BC CB 

Stiff
ness 1.333EI 1.333EI EI EI 

Distribu
tion   0.571 0.429 1.0 

fact
or     

FEM +1.5 -1.5 +5.0 -5.0 

kN.
m     

Bala
nce   +2.5 +5.0 

joint
s C -1.713 -3.426 -2.579 0 

and 
C.O.     

  -4.926 +4.926 

-
1.28
7 

Bala
nce   +0.644 

1.28
7 

and 
C.O.     

Bala
 -0.368 -0.276 -

0.13
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nce 8 

and 
C.O.     

Balance 
C -0.184 -5.294 +5.294 

0.13
8 

C.O.   +0.069 0 

Bala
nce -0.02 -0.039 -0.030 

-
0.01
5 

and 
C.O.     

Balance 
C    

+0.01
5 

Bala
nced -0.417 -5.333 +5.333 0 

momen
ts in     

kN.
m     

 

Example  

Draw the bending moment diagram for the continuous beam ABCD loaded as shown in 

Fig.18.4a.The relative moment of inertia of each span of the beam is also shown in the 

figure. 

 

 

 

 

 

 

 

 

 

 

Solution 
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Note that joint C is hinged and hence stiffness factor BC gets modified. Assuming that the 

supports are locked, calculate fixed end moments. They are 

M AB
F = 16 kN.m 

MBA
F = −16 kN.m 

MBC
F = 7.5 kN.m 

MCB
F = −7.5 kN.m, and 

MCD
F = 15 kN.m 

In the next step calculate stiffness and distribution factors 

Now all the calculations are shown in Fig.18.4b 

 

 

 

 

 

 

 

 

 

This problem has also been solved by slope-deflection method (see example 14.2).The 

bending moment diagram is shown in Fig.18.4c. 

 

 

 

 

 

 

 

 

Summary 

An introduction to the moment-distribution method is given here. The moment-

distribution method actually solves these equations by the method of successive 

approximations. Various terms such as stiffness factor, distribution factor, unbalanced 
moment, distributing moment and carry-over-moment are defined in this lesson.  
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Unit III 

Indeterminate Structures - II: Analysis of beams and frames by slope Deflection method, Column 
Analogy method. 

Slope deflection Method 

Introduction 

As pointed out earlier, there are two distinct methods of analysis for statically 
indeterminate structures depending on how equations of equilibrium, load displacement 
and compatibility conditions are satisfied: 1) force method of analysis and (2) displacement 
method of analysis. In the last module, force method of analysis was discussed. In this 
module, the displacement method of analysis will be discussed. In the force method of 
analysis, primary unknowns are forces and compatibility of displacements is written in 
terms of pre-selected redundant reactions and flexibility coefficients using force 
displacement relations. Solving these equations, the unknown redundant reactions are 
evaluated. The remaining reactions are obtained from equations of equilibrium. 
 

As the name itself suggests, in the displacement method of analysis, the primary 
unknowns are displacements. Once the structural model is defined for the problem, the 
unknowns are automatically chosen unlike the force method. Hence this method is more 
suitable for computer implementation. In the displacement method of analysis, first 
equilibrium equations are satisfied. The equilibrium of forces is written by expressing the 
unknown joint displacements in terms of load by using load displacement relations. These 
equilibrium equations are solved for unknown joint displacements. In the next step, the 
unknown reactions are computed from compatibility equations using force displacement 
relations. In displacement method, three methods which are closely related to each other 
will be discussed. 

1. Slope-Deflection Method  

2. Moment Distribution Method  

3. Direct Stiffness Method 
 

In this module first two methods are discussed and direct stiffness method is treated in the 

next module. All displacement methods follow the above general procedure. The Slope-

deflection and moment distribution methods were extensively used for many years before 

the compute era. After the revolution occurred in the field of computing only direct 

stiffness method is preferred. 

Degrees of freedom 

In the displacement method of analysis, primary unknowns are joint displacements which 

are commonly referred to as the degrees of freedom of the structure. It is necessary to 

consider all the independent degrees of freedom while writing the equilibrium equations. 

These degrees of freedom are specified at supports, joints and at the free ends. For 

example, a propped cantilever beam (see Fig.14.01a) under the action of load P will 

  

Page no: 24



 

 

undergo only rotation at B if axial deformation is neglected. In this case kinematic degree 

of freedom of the beam is only one i.e. θB as shown in the figure. 

In Figur 14.01 (b), we have nodes at A, B, C and D. Under the action of lateral loads, P1, P2 
and P3 , this continuous beam deform as shown in the figure. Here axial deformations are 
neglected. For this beam we have five degrees of freedom θ A, θB, θB, θ D and D as indicated 
in the figure. In Fig.14.02a, a symmetrical plane frame is loaded symmetrically. In this case 
we have only two degrees of freedom θ B and θC. Now consider a frame as shown in 
Fig.14.02b. It has three degrees of freedom viz. θ B, θC and D as shown. Under the action of 
horizontal and vertical load, the frame will be displaced as shown in the figure. It is 
observed that nodes at B and C undergo rotation and also get displaced horizontally by an 
equal amount. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14.01: Derivation of slope – deflection equation. 

Hence in plane structures, each node can have at the most one linear displacement and 

one rotation. In this module first slope-deflection equations as applied to beams and rigid 

frames will be discussed. 

Slope-Deflection Equations 

Consider a typical span of a continuous beam AB as shown in Fig.14.1.The beam has 
constant flexural rigidity EI and is subjected to uniformly distributed loading and 
concentrated loads as shown in the figure. The beam is kinematically indeterminate to 
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second degree. In this lesson, the slope-deflection equations are derived for the simplest 
case i.e. for the case of continuous beams with unyielding supports. In the next lesson, the 
support settlements are included in the slope-deflection equations. 

 

 

 

 

 

 

 

 

 

 

 

 

For this problem, it is required to derive relation between the joint end moments M AB and 

M BA in terms of joint rotations θA and θ B and loads acting on the beam .Two subscripts 

are used to denote end moments. For example, end moments MAB denote moment acting 

at joint A of the member AB. Rotations of the tangent to the elastic curve are denoted by 

one subscript. Thus, θA denotes the rotation of the tangent to the elastic curve at A. The 

following sign conventions are used in the slope-deflection equations (1) Moments acting 

at the ends of the member in counterclockwise direction are taken to be positive. (2) The 

rotation of the tangent to the elastic curve is taken to be positive when the tangent to the 

elastic curve has rotated in the counterclockwise direction from its original direction. The 

slope-deflection equations are derived by superimposing the end moments developed due 

to (1) applied loads (2) rotation θA (3) 

 

Rotation θ B. This is shown in Fig.14.2 (a)-(c). In Fig. 14.2(b) a kinematically determinate 
structure is obtained. This condition is obtained by modifying the support conditions to 
fixed so that the unknown joint rotations become zero. The structure shown in Fig.14.2 (b) 
is known as kinematically determinate structure or restrained structure. For this case, the 
end moments are denoted by M AB

F and M BA
F. The fixed end moments are evaluated by 

force–method of analysis as discussed in the previous module. For example for fixed- fixed 
beam subjected to uniformly distributed load, the fixed-end moments are shown in 
Fig.14.3. 
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The fixed end moments are required for various load cases. For ease of calculations, fixed 
end forces for various load cases are given at the end of this lesson. In the actual structure 
end A rotates by θA and end B rotates by θB. Now it is required to derive a relation relating 
θA and θB with the end moments M ′AB and M ′BA. Towards this end, now consider a simply 
supported beam acted by moment M AB′ at A as shown in Fig. 14.4. The end moment M AB′ 
deflects the beam as shown in the figure. The rotations θA′ aŶd θB′ aƌe ĐalĐulated fƌoŵ 
moment-area theorem. 

Θ͛A = ;M͛AB*L)(3EI)    3.1a 

Θ͛B = ;M͛AB*L)(6EI)    3.1b 

Now a similar relation may be derived if only M BA′ is aĐtiŶg at eŶd B (see Fig. 14.4). 

Θ”B = ;M͛BA*L)(3EI)    3.2a 

Θ”A = ;M͛BA*L)(6EI)    3.2b 

Now combining these two relations, we could relate end moments acting at A and B to 

rotations produced at A and B as (see Fig. 14.2c) 

ΘA = ;M͛AB*L)(3EI)    - ;M͛AB*L)/(6EI)    3.3a 

ΘB = ;M͛BA*L)(3EI)  -  ;M͛BA*L)/(6EI)      3.3b 

Solving for MAB and MBA iŶ teƌŵs of θA aŶd θB, 

M͛AB = ;ϮEI/LͿ ;Ϯ θA + θB)       3.4 

M͛BA = ;ϮEI/LͿ ;Ϯ θB + θA)       3.5 

Now writing the equilibrium equation for joint moment at A (see Fig. 14.2). 

MAB = MF
AB + M͛AB     3.6a 

Similarly writing equilibrium equation for joint B 

MBA = MF
BA + M͛BA     3.6b 

SuďstitutiŶg the ǀalues of M͛AB aŶd M͛BA  

MAB = MF
AB + ;ϮEI/LͿ ;Ϯ θA + θB)      3.7a 
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MBA = MF
BA + ;ϮEI/LͿ ;Ϯ θB + θA)       3.7b 

Sometimes one end is referred to as near end and the other end as the far end. In that 
case, the above equation may be stated as the internal moment at the near end of the 
span is equal to the fixed end moment at the near end due to external loads plus 2

L
EI times 

the sum of twice the slope at the near end and the slope at the far end. The above two 
equations (14.7a) and (14.7b) simply referred to as slope–deflection equations. The slope-
deflection equation is nothing but a load displacement relationship. 

3.3 Application of Slope-Deflection Equations to Statically Indeterminate Beams 

 

The procedure is the same whether it is applied to beams or frames. It may be summarized 

as follows: 
 

1) Identify all kinematic degrees of freedom for the given problem. This can be done 
by drawing the deflection shape of the structure. All degrees of freedom are 
treated as unknowns in slope-deflection method. 

2) Determine the fixed end moments at each end of the span to applied load. The 
table given at the end of this lesson may be used for this purpose. 

3) Express all internal end moments in terms of fixed end moments and near end, and 
far end joint rotations by slope-deflection equations. 

4) Write down one equilibrium equation for each unknown joint rotation. For 
example, at a support in a continuous beam, the sum of all moments corresponding 
to an unknown joint rotation at that support must be zero. 

5) Write down as many equilibrium equations as there are unknown joint rotations. 
6) Solve the above set of equilibrium equations for joint rotations. 
7) Now substituting these joint rotations in the slope-deflection equations evaluate 

the end moments. 
8) Determine all rotations. 

 

Example  

A continuous beam ABC is carrying uniformly distributed load of 2 kN/m in addition to a 

concentrated load of 20 kN as shown in Fig.14.5a. Draw bending moment and shear force 

diagrams. Assume EI to be constant. 
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(a) Degrees of freedom 

It is observed that the continuous beam is kinematically indeterminate to first degree as 

only one joint rotation θ B is unknown. The deflected shape /elastic curve of the beam is 

drawn in Fig.14.5b in order to identify degrees of freedom. 

By fixing the support or restraining the support B against rotation, the fixed-fixed beams 

area obtained as shown in Fig. C 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b). Fixed end moments M AB
F , M BA

F , M BC
F  and M CB

F  are calculated referring to the 

Fig. 14 and following the sign conventions that counterclockwise moments are positive. 

MF
AB = (2*6*6)/12 + (20*3*3*3)(6*6) = 21 kN M. 

MF
BA = - 21 kN M. 

MF
BC = (4*4)/12 = 5.33 kN M. 

MF
BA = - 5.33 kN M. 

(c) Slope-deflection equations 

Since ends A and C are fixed, the rotation at the fixed supports is zero, θ A = θC = 0. Only 

one non-zero rotation is to be evaluated for this problem. Now, write slope-deflection 

equations for span AB and BC. 

MAB = MF
AB + ;ϮEI/LͿ ;ϮΘA + θBͿ = Ϯϭ + ;ϮEI/ϲͿ θB 

MBA = MF
BA + ;ϮEI/LͿ ;ϮΘB + θA) = -Ϯϭ + ;ϰEI/ϲͿ θB 

MBC = ϱ.ϯϯ + EIθB 
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MCB = - ϱ.ϯϯ + Ϭ.ϱEIθB 

(d) Equilibrium equations 

In the above four equations (2-5), the member end moments are expressed in terms of 

unknown rotation θB. Now, the required equation to solve for the rotation θB is the 

moment equilibrium equation at support B. The free body diagram of support B along with 

the support moments acting on it is shown in Fig. 14.5d. For, moment equilibrium at 

support B, one must have, 

 

 

 

 

 

 

ΣMB = 0   MBA + MBC = 0  

Substituting the values of M BA and M BC in the above equilibrium equation, 

-Ϯϭ + ;ϰEI/ϲͿ θB + ϱ.ϯϯ + EIθB = 0 

θB = 9.4/(EI) 

(e) End moments 

After evaluating θB, substitute it in equations (2-5) to evaluate beam end moments. Thus,  

MAB = 24.133 kN M. 

MBA = - 14.733 kN M. 

MBC = 14.733 kN M. 

MCB = - 0.63 kN M. 

(f) Reactions 

Now, reactions at supports are evaluated using equilibrium equations (vide Fig. 14.5e) 

RA × 6 +14.733 − 20 × 3 − 2 × 6 × 3 − 24.133 = 0 

RA = 17.567 kN(↑) 

RBL = 20 + 12 − 17.567 = 14.433 kN(↑) 

RBR *4 – 14.733 – (4*4*2) + 0.63 = 0 

 RBR = 11.526 kN(↑) 

RC = 16 – 11.526 = 4.47 kN(↑) 

The shear force and bending moment diagrams are shown in Fig. 14.5f. 

 

  

Page no: 30



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example  

Draw shear force and bending moment diagram for the continuous beam ABCD loaded as 

shown in Fig.14.6a.The relative stiffness of each span of the beam is also shown in the 

figure. 

 

 

 

 

 

 

 

 

 

  

Page no: 31



 

 

 

 

For the cantilever beam portion CD, no slope-deflection equation need to be written as 

there is no internal moment at end D. First, fixing the supports at B and C, calculate the 

fixed end moments for span AB and BC. Thus, 

MF
AB = (3*8*8)/12 = 16 kN M. 

MF
BA = - 16 kN M. 

MF
BC = (10*3*3)(6*6) = 7.5 kN M. 

MF
BA = - 7.5 kN M. 

In the next step write slope-deflection equation. There are two equations for each span of 

the continuous beam. 

MAB = ϭϲ + ;ϮEI/LͿ θB = ϭϲ + Ϭ.ϮϱEI θB 

MAA = - ϭϲ + Ϭ.ϱEI θB 

MBC = ϳ.ϱ + ;ϮEI/LͿ ;ϮθB + θC) = ϳ.ϱ + ϭ.ϯϯϰEI θB + Ϭ.ϲϲϳEI θC 

MCB = - 7.5 + ϭ.ϯϯϰEI θC + Ϭ.ϲϲϳEI θB 

Equilibrium equations 

The free body diagram of members AB, BC and joints B and C are shown in Fig.14.6b.One 

could write one equilibrium equation for each joint B and C. 

 

 

 

 

 

 

 

 

Support B,  

ΣMB = 0   MBA + MBC = 0  

ΣMC = 0   MBC + MCD = 0  

We know that MCD = 15 kN.M 

MCB = 15 kN.M. Substituting the values of MCB and MCD in the above equation we get  

θB = ϴ.ϭϲϰ aŶd θC = 9.704  

Substituting θB θC in the slope-deflection equations, we get 
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MAb = 18.04 kN M.  

MBA = 11.918 kN M.  

MBC = - 11.918 kN M.  

MCB = - 15.0 kN M. 

Reactions are obtained from equilibrium equations (ref. Fig. 14.6c) 

 

 

 

 

 

 

 

 

 

RA ×8 −18.041− 3×8 × 4 +11.918 = 0 

RA =12.765 kN 

RBR = 5 − 0.514kN = 4.486 kN 

RBL =11.235 kN 

RC = 5 + 0.514kN = 5.514 kN 

The shear force and bending moment diagrams are shown in Fig. 14.6d. 
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For ease of calculations, fixed end forces  

 

 

 

Summary 

In this lesson the slope-deflection equations are derived for beams with unyielding 

supports. The kinematically indeterminate beams are analysed by slope-deflection 

equations. The advantages of displacement method of analysis over force method of 

analysis are clearly brought out here. A couple of examples are solved to illustrate the 

slope-deflection equations. 
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Column Analogy Method 

Introduction 

The column analogy method was also proposed by Prof. Hardy Cross and is a powerful 
technique to analyze the beams with fixed supports, fixed ended gable frames, closed 
frames & fixed arches etc., These members may be of uniform or variable moment of 
inertia throughout their lengths but the method is ideally suited to the calculation of the 
stiffness factor and the carryover factor for the members having variable moment of 
inertia. The method is strictly applicable to a maximum of 3rd degree of indeterminacy. 
This method is essentially an indirect application of the consistent deformation method. 

The method is based on a mathematical similarity (i.e. analogy) between the stresses 
developed on a column section subjected to eccentric load and the moments imposed on a 
member due to fixity of its supports. In the analysis of actual engineering structures of 
modern times, so many analogies are used like slab analogy, and shell analogy etc. In all 
these methods, calculations are not made directly on the actual structure but, in fact it is 
always assumed that the actual structure has been replaced by its mathematical model 
and the calculations are made on the model. The final results are related to the actual 
structure through same logical engineering interpretation. 

In the method of column analogy, the actual structure is considered under the action of 
applied loads and the redundant acting simultaneously on a BDS. The load on the top of 
the analogous column is usually the B.M.D. due to applied loads on simple spans and 
therefore the reaction to this applied load is the B.M.D. due to redundant on simple spans 
considers the following fixed ended loaded beam. 

The ƌesultaŶt of B.M.D͛s due to applied loads does not fall on the midpoint of analogous 
column section which is eccentrically loaded. 

Ms diagram = BDS moment diagram due to applied loads. 

Mi diagram = Indeterminate moment diagram due to redundant. 

If we plot (+ve) B.M.D. above the zero liŶe aŶd ;−ǀeͿ B.M.D ďeloǁ the zeƌo liŶe ;ďoth oŶ 
compression sides due to two sets of loads) then we can say that these diagrams have 
been plotted on the compression side. (The conditions from which MA & MB can be 
determined, when the method of consistent deformation is used, are as follows). From the 
Geometry requirements, we know that  

(1) The change of slope between points A & B = 0; or sum of area of moment diagrams 
between A & B = 0 (note that EI = Constant), or area of moment diagrams of figure b = area 
of moment diagram of figure c. 

(2) The deviation of point B from tangent at A = 0; or sum of moment of moment diagrams 
between A & B about B = 0, or Moment of moment diagram of figure(b) about B = moment 
of moment diagram of figure (c) about B. Above two requirements can be stated as 
follows. 

(1) Total load on the top is equal to the total pressure at the bottom and;  
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(2) Moment of load about B is equal to the moment of pressure about B), indicates that 
the analogous column is on equilibrium under the action of applied loads and the 
redundant. 

ϳ.ϭ. SIGN CONVENTIONS:− It is ŶeĐessaƌǇ to estaďlish a sigŶ ĐoŶǀeŶtioŶ ƌegaƌdiŶg the 
Ŷatuƌe of the applied load ;Ms −diagƌaŵͿ aŶd the pƌessuƌes aĐtiŶg at the ďase of the 
aŶalogous ĐoluŵŶ ;Mi−diagƌaŵ.Ϳ 

1. Load (P) on top of the analogous column is downward if Ms/EI diagram is (+ve) which 
means that it causes compression on the outside or (sagging) in BDS vice-versa. If EI is 
constant, it can be taken equal to units. 

2. Upward pressure on bottom of the analogous column (Mi −diagƌaŵͿ is ĐoŶsideƌed as 
(+ve). 

3. Moment (M) at any point of the given indeterminate structure (maximum to 3rd degree) 
is given by the formula. 

M = Ms −Mi, which is (+ve) if it causes compression on the outside of members 

In the last lesson, slope-deflection equations were derived without considering the 
rotation of the beam axis. In this lesson, slope-deflection equations are derived 
considering the rotation of beam axis. In statically indeterminate structures, the beam axis 
rotates due to support yielding and this would in turn induce reactions and stresses in the 
structure. Hence, in this case the beam end moments are related to rotations, applied 
loads and beam axes rotation. After deriving the slope-deflection equation in section 15.2, 
few problems are solved to illustrate the procedure. 
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Now superposing the fixed end moments due to external load and end moments due to 

displacements, the end moments in the actual structure is obtained .Thus (see Fig.15.1) 

In the above equations, it is important to adopt consistent sign convention. In the above 

derivation is taken to be negative for downward displacements. In the continuous beam 

ABC, two rotations θ B and θC need to be evaluated. 

Hence, beam is kinematically indeterminate to second degree. As there is no external load 

on the beam, the fixed end moments in the restrained beam are zero (see Fig.15.2b). 
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For each span, two slope-deflection equations need to be written. In span AB, B is below A. Hence, 
the chord AB rotates in clockwise direction. Thus, ψ AB is taken as negative. In span BC, the support 
C is above support B, Hence the chord joining B′C rotates in anticlockwise direction.  

ψ BC  = ψ CB = 1×10−3 

Writing slope-deflection equations for span BC,  

M BC = 0.8EIθ B + 0.4EIθC −1.2 ×10−3 EI  

M CB = 0.8EIθC + 0.4EIθ B −1.2 ×10−3 EI 

Now, consider the joint equilibrium of support B (see Fig.15.2c) 

 

 

 

 

 

 

 

 

 

M BA + M BC = 0  

Substituting the values of M BA and M BC in equation (6),  

0.8EIθ B + 1.2 ×10−3 EI + 0.8EIθ B + 0.4EIθC −1.2 ×10−3 EI = 0  

Simplifying, 1.6θ B + 0.4θC = 1.2 ×10−3 

Also, the support C is simply supported and hence, M CB = 0  

M CB = 0 = 0.8θC + 0.4θ B −1.2 ×10−3 EI 

0.8θC + 0.4θ B = 1.2 ×10−3 

We have two unknowns θ B and θC and there are two equations in θ B and θC. Solving 
equations (7) and (8) 
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θ

= −0.4286 ×10−3 radians  

θ
= 1.7143 ×10−3   radians (9) 

Substituting the values of θ B, θC and EI in slope-deflection equations, 

M AB = 82.285 kN.m M BA = 68.570 kN.m 

M BC = −68.573 kN.m M CB = 0 kN.m 

Reactions are obtained from equations of static equilibrium (vide Fig.15.2d) 

In beam AB, 

∑M B = 0, RA = 30.171 kN(↑) 

RBL = −30.171 kN(↓) 

RBR = −13.714 kN(↓) 

RC = 13.714 kN(↑) 

The shear force and bending moment diagram is shown in Fig.15.2e and elastic curve is 

shown in Fig.15.2f. 
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Example  

A continuous beam ABCD is carrying a uniformly distributed load of 5 kN/m as shown in 

Fig.15.3a. Compute reactions and draw shear force and bending moment diagram due to 

following support settlements. 

Support B 0.005m vertically downwards 

Support C 0.01 m vertically downwards 

Assume E =200 GPa, I = 1.35 ×10−3 m4 

 

 

 

 

 

 

 

In the above continuous beam, four rotations θ A, θ B, θC aŶd θD are to be evaluated. One 
equilibrium equation can be written at each support. Hence, solving the four equilibrium 
equations, the rotations are evaluated and hence the moments from slope-deflection 
equations. Now consider the kinematically restrained beam as shown in Fig.15.3b. 

Referring to standard tables the fixed end moments may be evaluated .Otherwise one 

could obtain fixed end moments from force method of analysis. The fixed end moments in 

the present case are (vide fig.15.3b) 
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M AB
F = 41.667 kN.m 

M BA
F = −41.667 kN.m (clockwise) 

M BC
F = 41.667 kN.m (counterclockwise) 

M CB
F = −41.667 kN.m (clockwise) 

M CD
F = 41.667 kN.m (counter clockwise) 

M DC
F = −41.667 kN.m (clockwise) 

In the next step, write slope-deflection equations for each span. For the span AB, B is 

below A and hence the chord joining AB′ ƌotates iŶ the ĐloĐkǁise diƌeĐtioŶ ;see Fig.ϭϱ.ϯĐͿ 
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Now, writing the expressions for the span end moments, for each of the spans, 

M AB = 41.667 + 0.2EI (2θ A +θ B + 0.0005) 

M BA = −41.667 + 0.2EI (2θB + θ A + 0.0005) 

M BC = 41.667 + 0.2EI (2θB + θC + 0.0005) 

M CB = −41.667 + 0.2EI (2θC + θ B + 0.0005) 

M CD = 41.667 + 0.2EI(2θC + θ D − 0.001)  

M DC = −41.667 + 0.2EI(2θ D + θC − 0.001) (3) 

For the present problem, four joint equilibrium equations can be written, one each for 

each of the supports. They are 

1. M A = 0 ⇒ M AB = 0 

2. M B = 0 ⇒ M BA + M BC = 0 

3. M C = 0 ⇒ MCB + MCD = 0 

∑M D = 0 ⇒M DC= 0 (4) 

Substituting the values of beam end moments from equations (3) in equation (4), four 

equations are obtained in four unknown rotations θ A ,θ B ,θC and θD .They are, 

(EI = 200 ×103 ×1.35 ×10−6 = 270,000 kN.m2) 

2θ A + θ B = −1.2716 ×10−3 

θ A + 4θ B +θC = −0.001 
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θ B + 4θC + θ D = 0.0005  

θC + 2θ D = 1.7716 ×10−3 

Solving the above sets of simultaneous equations, values of θA, θB, θC and θD are 

evaluated. 

Substituting the values in slope-deflection equations the beam end moments are 

evaluated. 

M AB = 41.667 + 0.2 × 270,000{2(−5.9629 ×10−4) + (−7.9013 ×10−5) + 0.0005)} = 0 

M BA = −41.667 + 0.2 × 270,000{2(−7.9013 ×10−5) − 5.9629 ×10−4 + 0.0005} = −55.40 kN.m 

M BC = 41.667 + 0.2 × 270,000{2(−7.9013 ×10−5) + (−8.7653 ×10−5) + 0.0005} = 55.40 kN.m 

M CB = −41.667 + 0.2 × 270,000{2(−8.765 ×10−5) − 7.9013 ×10−5 + 0.0005} = −28.40 kN.m 

M CD = 41.667 + 0.2 × 270,000{2 × (−8.765 ×10−5) + 9.2963 ×10−4 − 0.001} = 28.40 kN.m 

M DC = −41.667 + 0.2 × 270,000{2 × 9.2963 ×10−4 − 8.7653 ×10−5 − 0.001} = 0 kN.m  (7) 

Reactions are obtained from equilibrium equations. Now consider the free body diagram 

of the beam with end moments and external loads as shown in Fig.15.3d. 

RA = 19.46 kN(↑) 

RBL = 30.54 kN(↑) 

RBR = 27.7 kN(↑) 

RCL = 22.3 kN(↑) 

RCR = 27.84 kN(↑) 

RD = 22.16 kN(↑) 

The shear force and bending moment diagrams are shown in Fig.15.5e. 
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Summary 

In this lesson, slope-deflection equations are derived for the case of beam with yielding 

supports. Moments developed at the ends are related to rotations and support 
settlements. The equilibrium equations are written at each support. The continuous beam 

is solved using slope-deflection equations. The deflected shape of the beam is sketched. 
The bending moment and shear force diagrams are drawn for the examples solved in this 

lesson. 
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Unit IV 

Arches and Suspension Cables: Thƌee hiŶged aƌĐhes of diffeƌeŶt shapes, EddǇ͛s Theoƌeŵ, 
Suspension cable, stiffening girders, Two Hinged and Fixed Arches - Rib shortening and 
temperature effects 

Three Hinged Arch 

Introduction 

In case of beams supporting uniformly distributed load, the maximum bending moment 
increases with the square of the span and hence they become uneconomical for long span 
structures. In such situations arches could be advantageously employed, as they would 
develop horizontal reactions, which in turn reduce the design bending moment. 

 

For example, in the case of a simply supported beam shown in Fig. 32.1, the bending 
moment below the load is 3PL/16. Now consider a two hinged symmetrical arch of the same 
span and subjected to similar loading as that of simply supported beam. The vertical reaction 
could be calculated by equations of statics. The horizontal reaction is determined by the 
method of least work. Now the bending moment below the load is (3PL/16) Hy. It is clear 
that the bending moment below the load is reduced in the case of an arch as compared 
to a simply supported beam. It is observed in the last lesson that, the cable takes the shape of 
the loading and this shape is termed as funicular shape. If an arch were constructed in an 
inverted funicular shape then it would be subjected to only compression for those loadings 
for which its shape is inverted funicular. 
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Since in practice, the actual shape of the arch differs from the inverted funicular shape or the 

loading differs from the one for which the arch is an inverted funicular, arches are also 

subjected to bending moment in addition to compression. As arches are subjected to 

compression, it must be designed to resist buckling.  

Until the beginning of the 20th century, arches and vaults were commonly used to span between 

walls, piers or other supports. Now, arches are mainly used in bridge construction and 

doorways. In earlier days arches were constructed using stones and bricks. In modern times 

they are being constructed of reinforced concrete and steel. 
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A structure is classified as an arch not based on its shape but the way it supports the lateral 
load. Arches support load primarily in compression. For example in Fig 32.3b, no horizontal 
reaction is developed. Consequently bending moment is not reduced. It is important to 
appreciate the point that the definition of an arch is a structural one, not geometrical. 

 
Type of arches 

There are mainly three types of arches that are commonly used in practice: three hinged arch, 
two-hinged arch and fixed-fixed arch. Three-hinged arch is statically determinate structure 
and its reactions / internal forces are evaluated by static equations of equilibrium. Two-
hinged arch and fixed-fixed arch are statically indeterminate structures. The indeterminate 
reactions are determined by the method of least work or by the flexibility matrix method. 
In this lesson three- hinged arch is discussed. 

 

 

 

 

Analysis of three-hinged arch 

In the case of three-hinged arch, we have three hinges: two at the support and one at the 
crown thus making it statically determinate structure. Consider a three hinged arch subjected 
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to a concentrated force P as shown in Fig 32.5. 

 

 

There are four reaction components in the three-hinged arch. One more equation is required in 

addition to three equations of static equilibrium for evaluating the four reaction components. 

Taking moment about the hinge of all the forces acting on either side of the hinge can set up the 

required equation. 

Ha = Hb = PL/8h 

Va + Vb = Total downwards loads 

Example 32.1  
A three-hinged parabolic arch of uniform cross section has a span of 60 m and a rise of 10 m. It is 

subjected to uniformly distributed load of intensity 10 kN/m as shown in Fig. 32.6 Show that the 

bending moment is zero at any cross section of the arch. 

Reactions:  
Taking moment of all the forces about hinge A, yields 

Va = Vb = 10*60/2 = 300 kN. 

Taking moment about left hinge c, we get 

Va*30 – 10*30*15 – Ha*10 = 0 

Ha = Hb = 450 kN. 
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BM at any section XX is given as 

BMxx = Va*x – Ha*y – 10*x*(x/2) 

The equation of the three-hinged parabolic arch is y = 4hx(L-x)/L2 substituting 

BMxx = 300*x – 450(4*10*x*(60-x)) -5x2 = 300x – (450(2400x – 40x2))/(60*60) – 5x2   

           = 300x – 300x + 5x2 – 5x2 = 0 

In other words a three hinged parabolic arch subjected to uniformly distributed load is not 

subjected to bending moment at any cross section. It supports the load in pure 

compression. 

Example 32.2  

A three-hinged semicircular arch of uniform cross section is loaded as shown in Fig 32.7. 

Calculate the location and magnitude of maximum bending moment in the arch.  

Solution: 
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Reactions:  
Taking moment of all the forces about hinge B leads to, 

Va = 29.33kN  Vb = 10.67 kN. 

Bending moment  

Now making use of the condition that the moment at hinge of all the forces left of hinge is 

zero gives, CC 

Ha = Hb = 10.66 kN. 

The maximum positive bending moment occurs below D and it can be calculated by taking 

moment of all forces left of about D, 

Y at D = 4*15*8(30-8)/302 = 13.267 m. 

BM at D =  Va*8 – Ha*y = 93.213 kN M. 

Example 32.3  

A three-hinged parabolic arch is loaded as shown in Fig 32.8a. Calculate the location and 

magnitude of maximum bending moment in the arch. Draw bending moment diagram.  

Solution: 
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Reactions:  
Taking A as the origin, the equation of the three-hinged parabolic arch is given by, 

Va = 80.0 kN  Vb = 160.0 kN. 

Ha = Hb = 150.0 kN. 

Location of maximum bending moment  
Consider a section x from end B. Moment at section x in part CB of the arch is given by (please 

note that B has been taken as the origin for this calculation),  

BM = 160x – 150y – 10x2/2 

According to calculus, the necessary condition for extreme (maximum or minimum) is that 

d(BM)/dx = 0 solving we get x = 10.0 m. 

BM max = 200 kN m. 

 

 

Shear force at D just left of 40 kN load 
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The slope of the aƌĐh at D is eǀaluated ďǇ, taŶ θ = dǇ/dǆ = ;ϴ/ϭϬͿ – (16/400)x  

Put x = ϭϬ.Ϭ ŵ aŶd solǀiŶg θ = Ϯϭ.ϴ° 

Shear force at left of D is = Ha SiŶ θ – Va Cos θ = - 18.57 kN. 

Example 32.4  

A three-hinged parabolic arch of constant cross section is subjected to a uniformly distributed 

load over a part of its span and a concentrated load of 50 kN, as shown in Fig. 32.9. The 

dimensions of the arch are shown in the figure. Evaluate the horizontal thrust and the maximum 

bending moment in the arch.  

Solution: 
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Reactions:  
Taking A as the origin, the equation of the parabolic arch may be written as, 

Y = 4hx(L-x)/L2 = 4*3*x(20-x)/202 = -0.03x2 + 0.6x 

Taking moment of all the loads about B leads to, 

Va*25 + Ha*3.75 - 50*20 – 10*15*7.5 = 0 

Va = (2125 – 3.75Ha)/25 

Taking moment of all the forces right of hinge C about the hinge C and setting leads to, 

Vb = (1125 + 6.75 Hb)/15 

Ha = Hb  

Va + Vb = 50 + 10*15 = 200 kN. 

Substituting and solving Ha = Hb = 133.33 kN. 

Va = 65.0 kN,  Vb = 135.0 kN. 
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Bending moment  

From inspection, the maximum negative bending moment occurs in the region AD and the 

maximum positive bending moment occurs in the region CB.  

Span AD  

Bending moment at any cross section in the span AD is 

BM = Va*x – Ha*y = 65*x – 133.33 (-0.03x2 + 0.6x), x lies between 0 to 5 

For, the maximum negative bending moment in this region, dBM/dx = 0 

Solving x = 1.8748 m. 

BM = - 14.06 kN M. 

For the maximum positive bending moment in this region occurs at D, 

BM = Vb*5 – Hb*y = 135*5 – 133.33 *(-0.03 * 5*5 + 0.6*5) = 25.0 kN M. 

Span CB  
Bending moment at any cross section, in this span is calculated by, 

BM = Va*x – Ha*(-0.03x2 + 0.6x) – 50(x – 5) – 10(x – 10) (x – 5)/2 

For locating the position of maximum bending moment, dBM/dx = 0 

Solving x = 17.5 m. 

BM = 56.25 kN M. 

Hence, the maximum positive bending moment occurs in span CB. 

Summary  
 

In this lesson, the arch definition is given. The advantages of arch construction are given in the 

introduction. Arches are classified as three-hinged, two-hinged and hinge less arches. The 

analysis of three-hinged arch is considered here. Numerical examples are solved in detail to show 

the general procedure of three-hinged arch analysis. 

Two-Hinged Arch 

Introduction  

Mainly three types of arches are used in practice: three-hinged, two-hinged and hinge less 

arches. In the early part of the nineteenth century, three-hinged arches were commonly used for 

the long span structures as the analysis of such arches could be done with confidence. However, 

with the development in structural analysis, for long span structures starting from late 
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nineteenth century engineers adopted two-hinged and hinge less arches. Two-hinged arch is the 

statically indeterminate structure to degree one. Usually, the horizontal reaction is treated as the 

redundant and is evaluated by the method of least work. In this lesson, the analysis of two-

hinged arches is discussed and few problems are solved to illustrate the procedure for calculating 

the internal forces.  

Analysis of two-hinged arch  

A typical two-hinged arch is shown in Fig. 33.1a. In the case of two-hinged arch, we have four 

unknown reactions, but there are only three equations of equilibrium available. Hence, the 

degree of statically indeterminacy is one for two-hinged arch. 
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The fourth equation is written considering deformation of the arch. The unknown redundant 

reaction Hb is calculated by noting that the horizontal displacement of hinge bHB is zero. In 

general the horizontal reaction in the two hinged arch is evaluated by straightforward 

application of the theorem of least work (see module 1, lesson 4), which states that the partial 

derivative of the strain energy of a statically indeterminate structure with respect to statically 

indeterminate action should vanish. Hence to obtain, horizontal reaction, one must develop an 

expression for strain energy. Typically, any section of the arch (vide Fig 33.1b) is subjected to 

shear force V, bending moment M and the axial compression. The strain energy Ub due to 

bending is calculated from the following expression. 

Uď = ∫0
s(M2/2EI) ds 

The above expression is similar to the one used in the case of straight beams. However, in this 

case, the integration needs to be evaluated along the curved arch length. In the above equation, 

is the length of the centerline of the arch, sI is the moment of inertia of the arch cross section, E 

is the YouŶg͛s ŵodulus of the aƌĐh ŵateƌial. The stƌaiŶ eŶeƌgǇ due to sheaƌ is sŵall as Đoŵpaƌed 
to the strain energy due to bending and is usually neglected in the analysis. In the case of flat 

arches, the strain energy due to axial compression can be appreciable and is given by, 

Ua = ∫0
s(N2/2AE) ds 

The total strain energy of the arch is given by, 

U = ∫0
s(M2/ϮEIͿ ds + ∫0

s(N2/2AE) ds 

Noǁ, aĐĐoƌdiŶg to the pƌiŶĐiple of least ǁoƌk ∂U/∂H = 0, where H is chosen as the redundant 
reaction. 
  ∂U/∂H =∫0

s(M/EI) ;∂M/∂H) ds + ∫0
s(N/AE) ;∂N/∂H) ds 

Solving above equation, the horizontal reaction H is evaluated. 

Symmetrical two hinged arch  
Consider a symmetrical two-hinged arch as shown in Fig 33.2a. Let at crown be the origin of co-
ordinate axes. Now, replace hinge at B with a roller support. Then we get a simply supported 
curved beam as shown in Fig 33.2b. Since the curved beam is free to move horizontally, it will do 
so as shown by dotted lines in Fig 33.2b. Let M0 and No be the bending moment and axial force 
at any cross section of the simply supported curved beam. Since, in the original arch structure, 
there is no horizontal displacement, now apply a horizontal force H as shown in Fig. 33.2c. The 
horizontal force H should be of such magnitude, that the displacement at B must vanish.  
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From Fig. 33.2b and Fig 33.2c, the bending moment at any cross section of the arch (say), 

may be written as 

M = Mo – H(h – y) 

The axial compressive force at any cross section (say) may be written as 

N = No + H Cos θ 

Wheƌe θ is the aŶgle ŵade ďǇ the taŶgeŶt at ǁith hoƌizoŶtal ;ǀide Fig ϯϯ.ϮdͿ. D 
Substituting the value of M and in the equation (33.4), 

∂U/∂H = 0 = -∫0
s(Mo – H(h – y)(h – ǇͿ /EIͿ ds + ∫0

s;No + H Cos θ Cos θ /AEͿ ds 

Solving for H, yields, 

H = [∫0
s;Mo/EIͿ Ǉ͛ ds] /[ ∫0

s;Ǉ͛2/AE) ds] 

For an arch with uniform cross section EI is constant and hence, 

H = [∫0
s;MoͿ Ǉ͛ ds] /[ ∫0

s;Ǉ͛2) ds] 

In the above equation, Mo is the bending moment at any cross section of the arch when one of 

the hiŶges is ƌeplaĐed ďǇ a ƌolleƌ suppoƌt. Y͛ is the height of the aƌĐh as shoǁŶ iŶ the figuƌe. If the 
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moment of inertia of the arch rib is not constant, then equation (33.10) must be used to calculate 

the horizontal reaction H. 

Temperature effect  
Consider an unloaded two-hinged arch of span L. When the arch undergoes a uniform 

temperature change of T °C, then its span would increase by TLα if it ǁeƌe alloǁed to expand 

fƌeelǇ ;ǀide Fig ϯϯ.ϯaͿ. α is the Đo-efficient of thermal expansion of the arch material. Since the 

arch is restrained from the horizontal movement, a horizontal force is induced at the support as 

the temperature is increased. 

 

 

Now applying the CastigliaŶo͛s fiƌst theoƌeŵ, 

∂U/∂H = TLα  

Solving for H, 

H = [TLα ] /[ ∫0
s;Ǉ͛2/EI) ds] 
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Example 33.1  
A semicircular two hinged arch of constant cross section is subjected to a concentrated load as 

shown in Fig 33.4a. Calculate reactions of the arch and draw bending moment diagram. 

 

Solution:  
Taking moment of all forces about hinge B leads to, 

Va = 29.33 kN. 

Vb = 10.67 kN. 
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From Fig. 33.4b, 

Y͛ = R SiŶ θ 

X = R (1-Cos θͿ 

Ds = R d θ 

TaŶ θĐ = ϭϯ.Ϯϲϳ/ϳ  

ΘĐ = ϲϮ.ϭϬ° 

Now, the horizontal reaction H may be calculated by the following expression, 

H = [∫0
s;MoͿ Ǉ͛ ds] /[ ∫0

s;Ǉ͛2) ds] 

Now Mo is the bending moment at any cross section of the arch when one of the hinges is 

replaced by a roller support is given by, 

Mo = Va*R (1 - Cos θ) for θĐ lǇiŶg ďetǁeeŶ Ϭ to θ 

Mo = Va*R (1 - Cos θͿ – 40 (x – 8) for θĐ lǇiŶg ďetǁeeŶ θ to π 

Integrating and solving, the horizontal thrust at the support is, 

H = 19.90 kN. 

Bending moment diagram  
Bending moment Mat any cross section of the arch is given by, 
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M = Mo – HǇ͛ the bending moment diagram is shown in Fig. 33.4c.  

 

 

Summary  

Two-hinged arch is the statically indeterminate structure to degree one. Usually, the horizontal 

reaction is treated as the redundant and is evaluated by the method of least work. Towards this 

end, the strain energy stored in the two-hinged arch during deformation is given. The reactions 

developed due to thermal loadings are discussed. Finally, a few numerical examples are solved to 

illustrate the procedure. 

Cables 

Introduction  

Cables and arches are closely related to each other and hence they are grouped in this course in 

the same module. For long span structures (for e.g. in case bridges) engineers commonly use 

cable or arch construction due to their efficiency. In the first lesson of this module, cables 

subjected to uniform and concentrated loads are discussed. In the second lesson, arches in 

general and three hinged arches in particular along with illustrative examples are explained. In 

the last two lessons of this module, two hinged arch and hinge less arches are considered.  
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Structure may be classified into rigid and deformable structures depending on change in 

geometry of the structure while supporting the load. Rigid structures support externally applied 

loads without appreciable change in their shape (geometry). Beams trusses and frames are 

examples of rigid structures. Unlike rigid structures, deformable structures undergo changes in 

their shape according to externally applied loads. However, it should be noted that deformations 

are still small. Cables and fabric structures are deformable structures. Cables are mainly used to 

support suspension roofs, bridges and cable car system. They are also used in electrical 

transmission lines and for structures supporting radio antennas. In the following sections, cables 

subjected to concentrated load and cables subjected to uniform loads are considered. 
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The shape assumed by a rope or a chain (with no stiffness) under the action of external loads 

when hung from two supports is known as a funicular shape. Cable is a funicular structure. It is 
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easy to visualize that a cable hung from two supports subjected to external load must be in 

tension (vide Fig. 31.2a and 31.2b). Now let us modify our definition of cable. A cable may be 

defined as the structure in pure tension having the funicular shape of the load. 

Cable subjected to Concentrated Loads  

As stated earlier, the cables are considered to be perfectly flexible (no flexural stiffness) and 

inextensible. As they are flexible they do not resist shear force and bending moment. It is 

subjected to axial tension only and it is always acting tangential to the cable at any point along 

the length. If the weight of the cable is negligible as compared with the externally applied loads 

then its self-weight is neglected in the analysis. In the present analysis self-weight is not 

considered. 

Cable subjected to uniform load.  

Cables are used to support the dead weight and live loads of the bridge decks having long spans. 

The bridge decks are suspended from the cable using the hangers. The stiffened deck prevents 

the supporting cable from changing its shape by distributing the live load moving over it, for a 

longer length of cable. In such cases cable is assumed to be uniformly loaded. 
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Equation of cable y = qox2(2H) 

Equation represents a parabola. Now the tension in the cable may be evaluated as 

T = √[ Ƌox2 + H2] 

T = Tmax when x = L, 
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Tŵaǆ = √[ ƋoL
2 + H2] 

Due to uniformly distributed load, the cable takes a parabolic shape. However due to its own 

dead weight it takes a shape of a catenary. However dead weight of the cable is neglected in the 

present analysis. 

Summary  

In this lesson, the cable is defined as the structure in pure tension having the funicular shape of 

the load. The procedures to analyse cables carrying concentrated load and uniformly distributed 

loads are developed. A few numerical examples are solved to show the application of these 

methods to actual problems. 
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UNIT-V 

Rolling loads and Influence Lines: Maximum SF and BM curves for various types of rolling loads, 

focal length, EUDL, Influence Lines for Determinate Structures- Beams, Three Hinged Arches 

INFLUENCE LINE DIAGRAMS 
Introduction 
 
In the previous lessons, we have studied about construction of influence line for the either 

single concentrated load or uniformly distributed loads. In the present lesson, we will 

study in depth about the beams, which are loaded with a series of two or more than two 

concentrated loads. 

Maximum shear at sections in a beam supporting two concentrated loads  
Let us assume that instead of one single point load, there are two point loads P1 and P2 
spaced at y moving from left to right on the beam as shown in Figure 1.1. We are 
interested to find maximum shear force in the beam at given section C. In the present case, 
we assume that P2<P1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.1: Beam loaded with two concentrated point loads 
 
Now there are three possibilities due to load spacing. They are: x<y, x=y and x>y. 
 
Case 1: x<y 
 
This case indicates that when load P2 will be between A and C then load P1 will not be on 

the beam. In that case, maximum negative shear at section C can be given by 
 
VC  = −P2  xl 

 
and maximum positive shear at section C will be 
 
 
Case 2: x=y 
 
In this case, load P1 will be on support A and P2 will be on section C. Maximum negative 

shear can be given by 
 
VC = −P2 x

l and maximum positive shear at section C will 

be 
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Case 3: x>y 
 
With reference to Figure 1.2, maximum negative shear force can be obtained when load P2 
will be on section C. The maximum negative shear force is expressed as: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.2: Influence line for shear at section C 

 
VC

1 = −P2 xl − P1   x −l y 

And with reference to Figure 1.2, maximum positive shear force can be obtained when 

load P1 will be on section C. The maximum positive shear force is expressed as: 
 
VC 2 = −P1 xl + P2   l − xl − y 

From above discussed two values of shear force at section, select the maximum negative 

shear value. 
 
Maximum moment at sections in a beam supporting two concentrated loads  
Let us assume that instead of one single point load, there are two point loads P1 and P2 
spaced at y moving left to right on the beam as shown in Figure 1.3. We are interested to 
find maximum moment in the beam at given section C. 
 
 
 
 
 
 
 
 
 
 

Figure 1.3: Beam loaded with two concentrated loads 
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With reference to Figure 1.4, moment can be obtained when load P2 will be on section C. The moment 

for this case is expressed as: 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 1.4: Influence line for moment at section C 

 
M C 1 = P1 (x − y) l −l x + P2 x l −l x 
 
With reference to Figure 1.4, moment can be obtained when load P1 will be on section C. The moment 

for this case is expressed as: 
 
M C 2 = P1 x l −l x + P2 x l − xl − y 

From above two cases, maximum value of moment should be considered for maximum moment at 

section C when two point loads are moving from left end to right end of the beam. 
 
Maximum end shear in a beam supporting a series of moving concentrated loads 
 
In real life situation, usually there are more than two point loads, which will be moving on bridges. 

Hence, in this case, our aim is to learn, how to find end shear in beam supporting a series of moving 

concentrated loads. Let us assume that as shown in Figure 1.5, four concentrated loads are moving 

from right end to left end on beam AB. The spacing of the concentrated load is given in Figure 1.5. 
 
 
 
 

 

 

 

 

 

 

Figure 1.5: Beam loaded with a series of loads 
 
As shown in figure, we are interested in end shear at A. We need to draw influence line for the 
support reaction A and a point away from the support at infinitesimal distance on the span for the 
shear VA. The influence lines for these cases are shown in Figure 1.6 and 1.7. 
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Figure 1.6: Influence line for reaction at support A 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.7: Influence line for shear near to support A. 
 
When loads are moving from B to A then as they move closer to A, the shear value will increase. 

When load passes the support, there could be increase or decrease in shear value depending upon 
the next point load approaching support A. Using this simple logical approach, we will find out the 
change in shear value near support and monitor this change from positive value to negative value. 
Heƌe foƌ the pƌeseŶt Đase let us assuŵe that ΣP is suŵŵatioŶ of the loads ƌeŵaiŶiŶg oŶ the ďeaŵ. 
When load P1 crosses support A, then P2 will approach A. In that case, change in shear will be 
expressed as 
 
dV = ∑l

Px − P1 
 
When load P2 crosses support A, then P3 will approach A. In that case change in shear will be 

expressed as 
 
dV = ∑l

Py − P2 
 
In case if dV is positive then shear at A has increased and if dV is negative, then shear at A has 

decreased. Therefore, first load, which crosses and induces negative changes in shear, should be 

placed on support A. 
 
Numerical Example 
 
Compute maximum end shear for the given beam loaded with moving loads as shown in Figure 1.8. 
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When first load of 4 kN crosses support A and second load 8 kN is approaching support A, then 

change in shear can be given by 
 
dV = ∑(8 +8 + 4)2 − 4 = 0 10 
 
When second load of 8 kN crosses support A and third load 8 kN is approaching support A, then 

change in shear can be given by 
 
dV = ∑(8 + 4)3 −8 = −ϯ.ϴ 10 

 
Hence, as discussed earlier, the second load 8 kN has to be placed on support A to find out maximum 

end shear (refer Figure 1.9). 
 
 
 
 
 
 
 

 
Figure 1.9: Influence line for shear at A. 
 
VA = 4 ×1 +8 ×0.8 +8 ×0.5 + 4 ×0.3 =15.6kN 
 
Maximum shear at a section in a beam supporting a series of moving concentrated loads 
 
In this section we will discuss about the case, when a series of concentrated loads are moving on 

beam and we are interested to find maximum shear at a section. Let us assume that series of loads 

are moving from right end to left end as shown in Figure. 1.10. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
Figure 1.10: Beam loaded with a series of loads 
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Monitor the sign of change in shear at the section from positive to negative and apply the concept 

discussed in earlier section. Following numerical example explains the same. 
 
Numerical Example 
 
The beam is loaded with concentrated loads, which are moving from right to left as shown in Figure 

1.12. Compute the maximum shear at the section C. 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.12: Beam loaded with a series of loads 
 
The influence line at section C is shown in following Figure 1.13. 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 1.13: Influence line for shear at section C 
 
When first load 4kN crosses section C and second load approaches section C then change in shear at a 

section can be given by 
 
dV = 20

10
×2 − 4 = 0 

 
When second load 8 kN crosses section C and third load approaches section C then change in shear at 

section can be given by 
 
dV = 12

10
×3 −8 = −ϰ.ϰ 

 
Hence place the second concentrated load at the section and computed shear at a section is given by 
 
VC = 0.1×4 + 0.7 ×8 + 0.4 ×8 + 0.2 ×4 = 9.2kN 
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Maximum Moment at a section in a beam supporting a series of moving concentrated loads 
 
The approach that we discussed earlier can be applied in the present context also to determine the 
maximum positive moment for the beam supporting a series of moving concentrated loads. The 
change in moment for a load P1 that moves from position x1 to x2 over a beam can be obtained by 
multiplying P1 by the change in ordinate of the influence line i.e. (y2 – y1). Let us assume the slope of 
the influence line (Figure 1.14) is S, then (y2 – y1) = S (x2 – x1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Figure 1.14: Beam and Influence line for moment at section C 
 
Hence change in moment can be given by dM = P1S(x2 − x1) 
Let us consider the numerical example for better understanding of the developed concept. 
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