Roll No	
---------	--

MCA - 304

M.C.A. III Semester

Examination, December 2014

Theory of Computation

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 2 marks, part C (Max.100 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) What is an automation?
 - b) Differentiate between Kleene closure and transitive closure.
 - c) Design finite automata for the given expression $0 + (0 + 1)^* + 1$
 - d) Minimize the given automata:

OR

Construct mealy machine equivalent to given moore machine

Input

	1		
	0	1	output
q_0	q_1	q_2	0
$q_1 =$	q_0	q_3	1
q_2	q_3	q_2	1
q_3	q_1	q_2	0
	moited	TITL C	9119 (9)

Unit - II

- 2. a) What is ambiguity in grammar?
 - b) Define right most derivation and left most derivation.
 - c) Design CFG to accept the language

$$L(G) = \{0^{n/n}/ n \ge 1\}$$

d) Show that the given grammar is ambiguocy.

$$S \rightarrow SbS/a$$

OR

Find the reduced grammar equivalent to the given CFG:

$$S \rightarrow aC/SB$$

$$A \rightarrow bSCa$$

$$B \rightarrow aSB/bBC$$

$$C \rightarrow aBC/ad$$

Unit - III

- 3. a) Define PDA
 - b) What is Greibach normal form.

- c) Explain the transitions mapping function of PDA.
- d) Design PDA to accept {ww^R/w ∈ (0, 1)*}. Where w is a word and w^R is reverse of word.

OR

Convert the given grammar to CNF?

$$S \rightarrow aAC, A \rightarrow aB/bAB, B \rightarrow b, C \rightarrow c$$

Unit-IV

- 4. a) Why Turing machine is known as acceptor?
 - b) What is multi-dimensions Turing machine.
 - c) Design Turing machine for the language.

$$L = \left\{ a^n b^n a^{n+m}; n \ge 1, m \ge 1 \right\}$$

d) Explain universal Turing machine.

OR

Design Turing machine for the language:

$$L(G) = \left\{0^n 1^n / n \ge 1\right\}$$

Unit - V

- 5. a) What is undecidability?
 - b) What is recursively enumerable sets?
 - c) Explain complexity theory.
 - d) Describe linear bounded automata and its applications.

OR

Explain context sensitive grammar and their equivalence.
