Roll No

[4]

Unit - V

- a) Formally define context sensitive, grammar.
 b) Define the recursively enumerable set.
 c) Write brief note on complexity theory.
 3
 - d) State post correspondence problem. Explain it with the help of an example.

OR

Find a linear bounded automation that accepts the following language.

$$L = \{a^{n!} : n \ge 0\}$$

MCA - 304

MCA III Semester

Examination, June 2014

Theory of Computation

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - All parts of each question are to be attempted at one place.

www.rgpvonline.com

- iii) All questions carry equal marks, out of which part A and B (Max. 50 words) carry 2 marks, part C (Max. 100 words) carry 3 marks, part D (Max. 400 words) carry 7 marks.
- iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

. a) Define finite automata

2

3

- b) When would you say that the two finite acceptors are equivalent?
- c) State Myhill-Nerode theorem.
- Give a step-by-step method of constructing minimum automata.

OR

www.rgpvonline.com

www.rgpvonline.com

Construct DFA from	the given NFA.
--------------------	----------------

Present stage	Next stage	
	0	1
\mathbf{q}_0	q_0, q_1	q_0
q_1	q_2	\mathbf{q}_{i}
q_2	q_3	q_3
$\overline{\mathbb{Q}_3}$	_	q_2

Unit - II

2. a) State Ard	en's theorem.
-----------------	---------------

- Define Kleene's closure with example.
- c) What do you understand by a regular grammar?
- d) Show that $L = \{a^n b^n \text{ where } n \ge 1\}$ is not regular.

OR

Consider the following two DFAs M and m' over {a, b}:

Find out whether M and M are equivalent.

7`

2

3 www.rgpvonline.com

Unit - III

- a) Define left most and right most derivations. Explain it with example.
 - b) Construct a CFG for the regular expression $(011 + 1)^* (01)^*$
 - c) How to construct an equivalent PDA of a context free grammar?
 - d) Construct a PDA that accept the language generated by the following grammar.

 $S \rightarrow aB$

 $B \rightarrow bA/b$

 $A \rightarrow aB$

OR

Convert the following grammar into GNF.

 $S \rightarrow AA/a$

 $A \rightarrow ss/b$

Unit - IV

- a) Define Turing machine with multiple tracks.
 - b) What is an off-line Turing machine?
 - e) Explain the Turing machine halting problem.
 - Design a Turing machine that multiplies two positive integers in unary notation.

OR

Design a Turing machine to accept the language $L = \{WW^R, \text{ where } W \in (a, \text{whit}) \text{ rgpvonline.com} \}$

7