[Total No. of Printed Pages: 2

Roll No

MCA-304

M.C.A. III Semester

Examination, November 2019

Theory of Computation

Time: Three Hours

Maximum Marks: 70

Note: i) Attempt any five questions.

http://www.rgpvonline.com

ii) All questions carry equal marks.

- 1. a) Construct a finite state machine that accepts exactly those input strings of 0's and 1's that ends with "11". 7
 - b) If L is accepted by an NFA with ε-transition then show that L is accepted by an NFA without ε-transition.
- a) Construct a NDFA accepting all string in {a, b} with either two consecutive a "s or two consecutive b "s.
 - b) Construct a DFA equivalent to the NFA $M = (\{a, b, c, d\}, \{0, 1\}, \delta, a, \{b, d\})$ where δ is a defined as: 7

δ	0	1
a	{b,d}	{b}
b	С	{b, c}
С	d	a
d	-	a

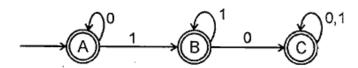
- a) Find a grammar in Chomsky Normal Form equivalent to S->aAD; A->aB/bAB; B->b, D->d.
 - b) Construct a grammar on GNF which is equivalent to the grammar:

 $S \rightarrow AA/a, A \rightarrow SS/b$

MCA-304

7

http://www.rgpvonline.com


http://www.rgpvonline.com

134

PTO

http://www.rgpvonline.com

- 4. a) Construct an NFA equivalent to the following regular expression:01*+1
 - b) Find the regular expression corresponding to the finite automaton given below: 7

- 5. a) Give a detailed description of ambiguity in Context free grammar.
 - Explain different types of acceptance of a PDA. Are they equivalent in sense of language acceptance? Justify your answer.
- a) Define Deterministic Push Down Automata DPDA. Is it true that DPDA and PDA are equivalent in the sense of language acceptance is concern. Justify your answer.
 - b) Explain in detail about equivalence of Push Down Automata and CFG
- a) Design a Turing Machine to accept the language
 L = {0ⁿ 1ⁿ / n > = 1}.
 - Explain in detail notes on Universal Turing Machines with example.
- a) Show that for two recursive language L₁ and L₂ each of the following is recursive
 - i) $L_1 \cup L_2$
 - ii) $L_1 \cap L_2$
 - iii) L₁*
 - Explain the Halting problem. Is it decidable or undecidable problem.

(35)

MCA-304 http://www.rgpvonline.com

(4)