Roll	No

MCA - 403

M.C.A. IV Semester

Examination, December 2014

Computer Graphics And Multimedia

Time: Three Hours

Maximum Marks: 70

- Note: i) Answer five questions. In each question part A, B, C is compulsory and D part has internal choice.
 - ii) All parts of each question are to be attempted at one place.
 - iii) All questions carry equal marks, out of which part A and B (Max.50 words) carry 3 marks, part D (Max.400 words) carry 7 marks.
 - iv) Except numericals, Derivation, Design and Drawing etc.

Unit - I

- 1. a) Discuss different categories of computer graphics.
 - b) Briefly describe standards of graphics system.
 - c) Standard TV has 480 scan lines if the aspect ratio is ¾. What is the capacity of frame buffer needed in 2 bits pixels are used.
 - d) Write a c/c++ program to draw line using DDA method.

OR

Give the complete implementation in c/c++ of mid-point algorithm to generate the circle

$$(x+2)^2 + (y-3)^2 = 9$$
 www.rgpvonline.com

www.rgpvonline.com

Unit - II

- 2. a) Define 2D transformation and their types.
 - b) Find equation of line y'=mx'+b in x, y co-ordinate if the x', y' co-ordinate system results from a 90 degree rotation of x, y coordinate system.
 - c) If a line segment with end points (1, 2) and (3, 4) under goes rotation about origin in anti-clock wise direction for π/4. Find new position of the line segment.
 - d) Obtain mirror reflection of \triangle ABC about the line passing through (4, 6) and (10, 15) where A, B and C has coordinate values (0, 10), (0, 50), (-20, 30) respectively.

OR

Show that the composition of two rotation is additive by concatenating the matrix representatives for $R(\theta_1)$ and $R(\theta_2)$ to obtain

 $R(\theta_1) R(\theta_2) = R(\theta_1 + \theta_2)$

Unit - III

- 3. a) Differentiate Gouraud shading and phong shading.
 - b) What do you understand by windowing and clipping.
 - c) Write simple line clipping algorithm.
 - d) A rectangular clipping window has two opposite vertices located at (0, 20) and (20, -20). Use cohen sutherland algorithm to find visibility of the line segment from (30, 30) to (50, 0) against the given window.

OR

Derive the equation for mapping a point (xw, yw) defined in window to viewport location (xv, yv).

Unit - IV

- 4. a) Explain depth-buffer algorithm to solve hidden surface removal problem.
 - b) Distinguish between parallel and perspective projection.

www.rgpvonline.com

- Given a point P (10, 20, 30) which undergoes the ahead sequence of transformations.
 - Rotation with respect to y-axis by an angle 45°
 - ii) Scaling with scaling factor (1.5, 1, 0.5)

Calculate final position of P.

d) Consider a line segment AB with end points A(4, 3, 2) and B(8, 3, 2). Find out the perspective projection of AB onto the plane x = 0 from the centre of projection at x = -4.

OR

Four control points P_1 (70, 0), P_2 (50, 0), P_3 (120, 60), P_4 (120, 30) are specified for a Bezier curve; obtain the coordinate of mid point of curve and draw a rough sketch of the curve.

Unit - V

- 5. a) What is the file size in bytes of 30 seconds of digitized audio using a 16-bit sample at 44 KHz.
 - b) What do you understand by multimedia? Explain with its application.
 - c) What do you mean by MIDI?
 - d) What are components of a multimedia system?

OR

Describe different types of authoring tools.

www.rgpvonline.com