MECM-105

M. E./M. Tech. (First Semester) EXAMINATION, Dec., 2011

(Grading/Non-Grading System)

PROCESS MODELING AND SIMULATION

 $(\mathrm{MECM}-105)$

Time: Three Hours

Maximum Marks : $\begin{cases} GS: 70 \\ NGS: 100 \end{cases}$

Note: Attempt any four questions. All questions carry equal marks. Make suitable assumption wherever required.

- 1. (a) Explain the various steps of development of system simulation model.
 - (b) What are the basic modeling principles?
 - (c) Explain steady state and dynamic simulation with example.
- 2 (a) What are the different steps of steady state simulation?
 - (b) What are the different approaches for steady state simulation? Compare various approaches.
 - (c) How are process simulation packages organised?
- 3. (a) What are the information necessary for solving any flowshetting problem?
 - (b) Explain the steps of solving flowshetting problem with example.
 - (c) What is Integrated computer aided system?
- Explain application of any simulation package by taking Chemical Engg. examples.

- (a) How is modeling and simulation helpful in chemical process design?
- (b) Apply basic modeling principles for design of
 - (i) Heat transfer equipment
 - (ii) Mass transfer equipment
- 6. Benzene is nitrated in an isothermal CSTR in three sequential irreversible reactions:

Benzene + $HNO_3 \xrightarrow{k_1}$ nitrobenzene + H_2O

Nitrobenzene + $HNO_3 \xrightarrow{k_2}$ dinitrobenzene + H_2O

Dinitrobenzene + $HNO_3 \xrightarrow{k_3}$ trinitrobenzene + H_2O

Assuming each reaction is linearily dependent on the concentrations of each reactant, derive a dynamic mathematical model of the system. There are two feed stream one pure benzene and one concentrated nitric acid (98 wt.%) assume constant densities and complete miscibility.

7 An isothermal irreversible reaction $A \xrightarrow{k} B$ takes place in the liquid phase in a constant volume reactor. The mixing is not perfect observation of flow patterns indicates that a two tank system with back mixing as shown in figure ahead, should approximate the imperfect mixing.

