RGPVONLINE.COM

Roll No

MEDC-103

M.E./M.Tech., I Semester

Examination, December 2014

DSPApplication

Time: Three Hours

Maximum Marks: 70

- Note: 1. Attempt any five questions.
 - 2. All questions carry equal marks.
- a) What is LTI System? How discrete time LTI System differs from continuous time LTI System? Derive the equation for the convolution sum as applicable to DTLTI System.
 - b) Compute the convolution y(n) of the signals

$$x(n) = \begin{cases} a^n & , \quad -3 \le n \le 5 \\ 0 & , \quad elsewhere \end{cases}$$

$$h(n) = \begin{cases} 1 & , & 0 \le n \le 4 \\ 0 & , & elsewhere \end{cases}$$

2. a) What is Causal System? How the condition of causality is transformed to condition on impulse response?

b) Show that a relaxed linear system is causal if and only if for any input x(n) such that

$$x(n)=0$$
 for $n < n_0 \Rightarrow y(n)=0$ for $n < n_0$

- 3. a) Prove the property of time shifting and time reversal as applicable to Z-transform.
 - b) Show that Z-transform of the sequence.

$$x(n) = \begin{cases} \frac{a^n}{n!} & , & n \ge 0 \\ 0 & , & n < 0 \end{cases}$$

is $e^{a/z}$. Sketch the sequence for the first few values of n, for the case a = 1.

4. a) Using long division, determine the inverse Z-transform

of
$$X(z) = \frac{1 + 2z^{-1}}{1 - 2z^{-1} + z^{-2}}$$
.

If (i) x(n) is causal and (ii) x(n) is anticausal

- b) Compute Z-transform for the following
 - i) $x(n) = (n a^n \sin \omega_0 n) u(n)$
 - ii) $x(n) = n^2 u(n)$
- 5. a) Differentiate:
 - i) Circular convolution and linear convolution.
 - ii) DFT and DCT. Discuss relationship between them.
 - b) Draw the flow graph for decimation in time FFT algorithm for N=8, using radix-2. Show various steps of decimation fittp://www.rgpvonline.com

- a) What are the desirable and undesirable features of FIR filters? Differentiate between FIR filters and IIR filters.
 - b) Explain mapping of a analog filter from S-plane to digital filter in Z-plane using Bilinear transformation. Also investigate the characteristics of the Bilinear transformation.
- 7. a) Describe response of linear systems to random signals.
 - Explain Basic principles of spectrum estimation. Estimate auto covariance, power spectrum, cross covariance and cross spectrum.
- 8. Write short notes on any two of the following.
 - Recursive and non-Recursive system.
 - ii) Design of FIR filter by windowing techniques.
 - iii) Effect of finite register length in filter design.
 - iv) Haar transform.

RGPVONLINE.COM