Roll No

Using long division, determine the inverse z transform

of X (z) =
$$\frac{1+2^{z-1}}{1-2z^{-1}+z^{-2}}$$
, if (a) x (n) is causal, (b) x (n) is anticausal.

OR

Determine stability region for the causal system $H(z) = \frac{1}{1 - a_1 z^{-1} + a_2 z^{-2}}$ by computing its poles and restricting them to be inside the unit circle. 14

家家家家家家

RGPVONLINE.COM

MEDC - 103 RGPVONLINE.COM

M.E./M.Tech., I Semester

Examination, June 2014

DSPApplication

Time: Three Hours

Maximum Marks: 70

Note: 1. Attempt any five questions.

- 2. All questions carry equal marks.
- 1. a) Give the frequency response of the moving average system.

$$h[n]\begin{cases} \frac{1}{M1+M2+1}, -M1 \le n \le M2, \\ 0, otherwise \end{cases}$$

Also draw its magnitude and phase spectrum.

OR

b) Find the frequency response H(e^{iw}) of linear time invariant system whose input and output satisfy the difference 14 equation.

$$Y[n]-1/2y[n-1] = x[n]+2x[n-1]+x[n-2]$$

Consider the system

14

$$H(z) = \frac{1 - 2z^{-1} + 2z^{-2} - z^{-3}}{(1 - z^{-1})(1 - .5z^{-1})(1 - .5z^{-1})} ROC(0.5|z| > 1.$$

Sketch the poles and zeros of the system and determine the impulse response of the system.

41 RGPVONLINE.COM

OR

b) Determine the Z transform for $x(n) = \cos w_0(n) u(-n)$ and $x(n) = \sin w_0(n) u(-n)$.

3. a) Write a note on:

14

- i) Filtering of long data sequences.
- ii) Relationship between DCT and DFT

OR

- b) Compute the 16 point DFT of the sequence $x(n) = \cos \frac{\pi}{2}n$ using radix-4 decimation in time algorithm.
- 4. a) Write a note on multirate signal processing. 14

OR

- b) Write a note on power spectrum estimation with respect to discrete time random signals.
- 5. a) Design a discrete time low pass filter using the bilinear transformation on a continuous time ideal low pass filter. Assume that the continuous time prototype filter has cut off frequency $\Omega_{\rm c}$ = 2 Π (2000) rad/s and the bilinear transformation parameter T = 0.1 ms. What was the cut off frequency $\Omega_{\rm c}$ for the prototype continuous time filter?

 Use Kaiser window method to design a discrete time filter with generalized linear phase that meets specification of the form;

- i) Determine the minimum length (M+1) of the impulse response and the value of the Kaiser window parameter β for a filter that meets the preceding specifications.
- ii) What is the delay of the filter?

RGPVONLINE.COM

6. a) Write a note on finite register length in filter design. 14
OR

- b) Write a note on discrete time random signals. 14
- 7. a) Determine the direct form II realization for the following LTI system.

i)
$$2y(n) + y(n-1) 4y(n-3) = x(n) + 3x(n-5)$$

ii)
$$y(n) = x(n) - x(n-1) + 2x(n-2) - 3x(n-3)$$

OR

b) Determine circular convolution as well as linear convolution for the sequences x_1 (n) = {2, 1, 2, 1} and x_2 (n) = {1, 2, 3, 4, 5}.