http://www.rgpvonline.com [Total No. of Printed Pages :2

Roll No .....

## MEDC-103

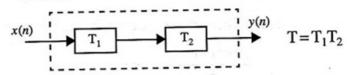
## M.E./M.Tech., I Semester

Examination, June 2016

## **DSP**Application

Time: Three Hours

Maximum Marks: 70


Note: i) Attempt all questions.

http://www.rgpvonline.com

http://www.rgpvonline.com

- ii) All questions carry equal marks.
- iii) Attempt any two parts from each questions.
- a) Two discrete time systems T<sub>1</sub> and T<sub>2</sub> are connected in cascade to gorm a new system T as shown in figure.

  If T<sub>1</sub> and T<sub>2</sub> are LTI, test whether interchanging the orders of T<sub>1</sub> and T<sub>2</sub> does not change the system T.



- b) The discrete time system y(n) = ny(n-1) + x(n)  $n \ge 0$  is at rest [i.e. y(-1) = 0]. Check if the system is linear time invariant and BIBO stable.
- c) Determine the zero input response of the system described by the second order difference equation. x(n) 3y(n-1) 4y(n-2) = 0
- 2. a) Determine one-sided Z-transform of y(n) + 0.5y(n-1) 0.25y(n-2) = 0 given that y(-1) = y(-2) = 1
  - b) State and prove the following properties of Z-transform:
    - i) Time shifting
- ii) Differentiation

http://www.rgpvonline.com [2]

e) Determine the inverse of Z-transform of causal

$$X(z) = \frac{4 - 8z^{-1} + 6z^{-2}}{\left(1 - 2z^{-1}\right)2\left(1 + z^{-1}\right)}$$

- 3. a) State and prove shifting property of DFT.
  - b) Find the convolution of the two signals

$$x(n) = 3^n u(-n); h(n) = \left(\frac{1}{3}\right)^n u(n-2)$$

- How do you linear filtering by FFT using save-add method.
- 4. a) Obtain the Direct form II y(n) = -0.1(n-1) + 0.72y(n-2) + 0.7x(n) 0.252 x(n-2)
  - b) Convert the analog filter  $H(s) = \frac{0.5(s+4)}{(s+1)(s+2)}$  using impulse invariant transformation T = 0.31416s.
  - c) Write the characteristics features of Hanning window.
- 5. a) An ideal Hilbert transformer with impulse response

$$h[n] = \begin{cases} \frac{2\sin^2(\pi n/2)}{\pi n}, & n \neq 0, \\ 0, & n = 0, \end{cases}$$

has input xr[n] and output  $x_i[n] = x_r[n] *h[n]$ , where  $x_r[n]$  is a discrete-time random signal. Find an expression for the cross-correlation sequence  $\Phi_{x_rx_i}[m]$ . Show that in this case  $\Phi_{x_rx_i}[m]$  is an odd function of m.

- b) Write short note on spectrum estimation.
- Explain how power spectrum can be estimated from the AR model.

\*\*\*\*\*

x<sub>r</sub>[n] <sup>2</sup> on for hat in

MEDC-103