Roll No

MEIC - 104

M.E./M.Tech., I Semester

Examination, June 2013

Operation Research and Optimization

Time: Three Hours

Maximum Marks: 70

Note: 1. Attempt any five questions.

- 2. All questions carry equal marks.
- 1. a) Define linear programming problem and solve the given L.P.P. by graphical method.

$$Max Z = 2x_1 + 3x_2$$

Subject to
$$x_1 + x_2 \le 30$$

 $x_2 \ge 3$
 $x_2 \le 12$
 $x_1 - x_2 \ge 0$
 $0 \le x_4 \le 20$

RGPVONLINE.COM

b) Solve by simplex method.

$$MaxZ = 4x_1 + 10x_2$$

Subject to
$$2x_1 + x_2 \le 10$$

 $2x_1 + 5x_2 \le 20$
 $2x_1 + 3x_2 \le 18$

2. a) State the 'principle of optimality' in dynamic programming and give a mathematical formulation of a dynamic programming problems.

b) Use dynamic programming to show that

$$z = \sum_{i=1}^{n} P_i \log Pi$$

subject to constraints

$$\sum_{i=1}^{n} P_i = 1 \text{ and } P_i \ge 0$$

is maximum when
$$P_1 = P_2 = P_3 = - - - = P_n = \frac{1}{n}$$
.

- State and prove Kuhu-Tucker necessary and sufficient conditions in non linear programming.
 - b) Define Non Linear programming problem and explain different types of non Linear programming problem.
- 4. a) What is quadratic programming? Explain Walfe's method of solving it.
 - b) Solve the integer programming problem.

$$Max Z = 7x_1 + 9x_2$$

Subject to
$$-x_1+3x_2 \le 6$$

$$7x_1 + x_2 \le 35$$

RGPVONLINE.COM $x_1 \ge 0, x_2 \ge 0$

MEIC-104

$$x_1 \ge 0, x_2 \ge 0$$

and integers.

- 5. 'a) Explain Branch and Bound Algorithm.
 - b) Find the optimal solution to the given Transportation problem.

	\mathbf{D}_{I}	D_2	D_3	D_4	Available
O_1	23	27	16	18	30
O_2	12	17	20	51	40
O_3	22	28	12	32	53
,	22	35	25	41	

Required

PTO

- 6. a) What do you mean by duality? What is its role in L.P.P.
 - b) Solve the non-Linear programming problem.

Max
$$Z = 4 x_1 - x_1^3 + 2 x_2$$

Subject to

$$x_1 + x_2 \le 1$$

$$x_1, x_2 \ge 0$$

7. a) Minimize

$$z = y_1^2 + y_2^2 + y_3^2$$

Subject to $y_1 + y_2 + y_3 \ge 15$

$$y_1, y_2, y_3, \ge 0$$

Solve by forward recursion.

- b) State the assignment Model. Describe an algorithm for the solution of the assignment problem.
- 8. Write a short note (any four)
 - i) Method of steepest descrent in non Linear programing
 - ii) Maximizing Convex objective function
 - iii) Degeneracy in Transportation Problem
 - iv) Applications of Dynamic Programing
 - v) Limitations of Integer programing
 - vi) Revised Simplex Method

25B

MEIC-104