RGPVonline.com Roll No

MEIC-202

M.E./M.Tech. II Semester

Examination, May 2018

Optimal and Adaptive Control

Time: Three Hours

Maximum Marks: 70

- Note: i) Attempt any Five questions.
 - ii) All questions carry equal marks.
- Derive expression for the Euler-Langrage equation. Discuss the significance and applications of this equation.
 - State and explain the term Convexity with suitable example.
- Explain how to be formulate the optimal control problem. RGPVonline.com
 - Determine an optimal control law for transferring the system

$$\dot{x}_1 = x_2$$

 $\dot{x}_2 = U$ form an arbitrary initial state to the point (2, 2) in minimum time with $|u(t)| \le 1.0$

The system equation are given as a)

$$\dot{X} = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \mathbf{X} + \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} U$$

optimize the PI given below using matrix Riccati equation.

$$PI = \int_0^\infty \left\{ X^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} X + U^T \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\} dt$$

Explain the optimal state estimation with suitable description.

PTO

RGPVonline.com [2]

- Derive the Riccati equation of continuous time linear state Regulator.
 - The plant equation of a system are given by:

$$\dot{x} = -x + u$$

It is required to minimize the

$$PI = \int_0^1 (x^2 + u^2) dt$$

Obtain an open loop control law using:

- Calculus of variations and
- ii) Pontryagin's maximum principle.

Explain the Pontryagin's minimum principle and state inequality constraints.

How does pole placement help in stabilizing a system.

What is the Sub-optimal control? Define of sub-optimal control for discrete time system.

Write a short note on parameter optimization.

State the Two-point boundary value problems and explain

- State the Two-point boundary value problems and explain how it can be solved though variation of extremals. Also summarize the algorithm of variation of extremals.
- Find extremals for

i)
$$\int_{t_0}^{t_f} \frac{\dot{x}^2}{t^3} dt$$

ii)
$$\int_{t_0}^{t_f} (\dot{x}^2 + x^2 + 2xe^t) dt$$

What do you mean by full - state feedback control law? How does it help in pole placement design of control system?

Write down Necessary and Sufficient Condition for Arbitrary Pole Placement