Roll No .. rgpvonline.com

MEVD - 203

M.E./M.Tech., II Semester

Examination, June 2014

VLSI Test and Testability

Time: Three Hours

Maximum Marks: 70

- Note: i) Attempt any five questions.
 - ii) All questions carry equal marks.
 - iii) Assume the missing data, if any.
- 1. a) Explain the different types of faults and failure.
 - Explain different levels of testing. Also discuss design for testability.
- a) Explain why the (input or output) inertial delay of a gate cannot be greater than the smallest transport delay associated with the gate i.e. d₁ ≤ min {d₁, d₁} where d₁ is inertial delay, d₁ is rise delay and d₁ is fall delay.
 - b) For the circuit of figure 1
 - i) Find the set of all tests that defects the fault C s-a-1.
 - ii) Find the set of all tests that detect the fault a s-a-0.

- a) Prove that in a combinational circuit if two faults dominate each other, then they are functionally equivalent.
 - b) For the circuit of figure 2.
 - i) Find the set of all tests that detect the fault b s-a-1.
 - ii) Find the set of all tests that distinguish the fault a s-a-0 and d s-a-0.

- 4. a) Design a ALFSR for the following polynomial. Also find out the generated number sequence by the ALFSR. $P(x) = x^4 + x^3 + 1.$
 - b) Design a synchronous sequential circuit for the state table given in following table using the scan path design method and design a test sequence.

Present	Input N.S./ Output	
State	X=0	<i>X</i> =1
A	A/0	B/0
В	A/0	B/1
С	D/1	C/1
D	C/0	A/0

- a) Explain the testing of sequential circuit as iterative combinational circuit.
 - b) Explain the D-algorithm for test generation. Also explain the working of D-algorithm using an example.
- a) Explain the IEEE standard 1149.1 for board and systemlevel boundary scan. Also discuss the boundary scan cell.
 - b) Explain Ad-Hoc testable design techniques.
- 7. a) For a two-input AND gate and a two-input exclusive-OR gate, develop the singular cover of the gates the propagation D-cubes and primitive D-cubes of failure for a s-a-1 fault on one of the gate inputs.
 - b) Discuss the generic offline BIST architecture.
- 8. Write a short note on following (any four)
 - i) Controllability and Observability
 - ii) Reliability
 - iii) IDDQ testing
 - iv) Fault collapsing
 - v) RAM BIST

PTO