Roll No

[2]

rgpvonline.com

MVSE - 102

M.E./M.Tech. I Semester

Examination, December 2015

Strength of Material and Theory of Elasticity

Time: Three Hours

Maximum Marks: 70

- *Note:* i) Attempt any five questions.
 - ii) All questions carry equal marks.
 - iii) Any data missing but essential may be assumed suitably and should be stated.
- Define homogeneous, isotropic and anisotropic materials.
 - b) Derive the differential equations of equilibrium in 3D, in Cartesian system of co-ordinates.
- The state of stress at a point is given as (all in MPa):

$$\sigma_{xx} = 90, \sigma_{yy} = 85, \sigma_{zz} = -40, \tau_{xy} = 45, \tau_{yz} = 58, \tau_{xz} = 34$$

Find the resultant stress on a plane whose normal has the direction cosines 1=0.62 and m=0.37.

- 3. a) Show that Airy stress function $\phi = 2x^4 + 12x^2y^2 6y^4$ satisfies the Bi-harmonic equation. Also, determine the stress components assuming plane strain condition.
 - Obtain an appropriate stress function for the following cases:
 - Uniaxial state of stress
 - Pure shear

- Show by considering the equilibrium of the whole bar that when all stress components vanish except τ_{xz} , τ_{yz} the loading must consist of torsional couples only.
 - Discuss torsional problem for thin tubes using the membrane analogy.
- For the displacement field given as: $u = 3xy^2$, v = 2xz, $w = z^2 - xy$

Check whether the compatibility condition is satisfied or not.

- Explain the significance of strain compatibility equation.
- Differentiate between plane stress and plane strain 6. problems. Give examples to illustrate your answer.
 - Derive elastic constitutive matrix for both plane stress and plane strain cases.
- Discuss strain components in Polar co-ordinate system.
 - An open ended thick wall cylinder (Internal radius = r_1 , external radius = r_2) is subjected to both internal and external pressure p₁ and p₂ respectively. Compute tangential and radial stresses.
- Write short notes on any Four:
 - Homogeneous and Isotropic material
 - Generalized Hook's law
 - Stress Invariants
 - Torsion of rectangular bars
 - Torsional buckling

MVSE-102